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The Bilirubin-Increasing Drug Atazanavir Improves
Endothelial Function in Patients With Type 2
Diabetes Mellitus

Douwe Dekker, Mirrin J. Dorresteijn, Margot Pijnenburg, Suzanne Heemskerk, Anja Rasing-Hoogveld,
David M. Burger, Frank A.D.T.G. Wagener, Paul Smits

Objective—In type 2 diabetes mellitus (T2DM), oxidative stress gives rise to endothelial dysfunction. Bilirubin, a powerful
endogenous antioxidant, significantly attenuates endothelial dysfunction in preclinical experiments. The Gilbert
syndrome is accompanied by a mild and lifelong hyperbilirubinemia and associated with only one third of the usual
cardiovascular mortality risk. The hyperbilirubinemia caused by atazanavir treatment closely resembles the Gilbert
syndrome. We thus hypothesized that treatment with atazanavir would ameliorate oxidative stress and vascular
inflammation and improve endothelial function in T2DM.

Methods and Results—In a double-blind, placebo-controlled crossover design, we induced a moderate hyperbilirubinemia
by a 3-day atazanavir treatment in 16 subjects experiencing T2DM. On the fourth day, endothelial function was assessed
by venous occlusion plethysmography. Endothelium-dependent and endothelium-independent vasodilation were
assessed by intraarterial infusion of acetylcholine and nitroglycerin, respectively. Atazanavir treatment induced an
increase in average bilirubin levels from 7 wmol/L (0.4 mg/dL) to 64 wmol/L (3.8 mg/dL). A significant improvement
in plasma antioxidant capacity (P<<0.001) and endothelium-dependent vasodilation (P=0.036) and a decrease in plasma
von Willebrand factor (P=0.052) were observed.

Conclusion—Experimental hyperbilirubinemia is associated with a significant improvement of endothelial function in
T2DM. (Arterioscler Thromb Vasc Biol. 2011;31:458-463.)

Key Words: antioxidants m atherosclerosis m endothelial function m reactive oxygen species m bilirubin
m type 2 diabetes mellitus

For years, bilirubin has been recognized as a powerful
antioxidant in the human body.!? As atherosclerosis is
characterized by a chronic state of low-grade inflammation?
and oxidative stress of the vascular wall,* its development
may be delayed by bilirubin. Preclinical data strongly support
this hypothesis. Several in vitro experiments for example
have demonstrated protection against low-density lipoprotein
(LDL) oxidation by physiological or only mildly elevated
bilirubin levels.>¢ Moreover, bilirubin attenuates the proin-
flammatory response of vascular endothelial cells to oxidized
LDL and tumor necrosis factor-a.” Most importantly, paren-
teral treatment with bilirubin ameliorated the endothelium-
dependent vasodilator response of thoracic aortic rings of
LDL receptor knockout mice on a high-fat diet.” In line with
these robust preclinical data, multiple observational studies
have demonstrated an inverse relationship between bilirubin
levels and cardiovascular disease in humans.®® Striking in
this respect is the fact that subjects with a mild lifelong

hyperbilirubinemia due to the Gilbert syndrome carry only
one third of the cardiovascular mortality risk of subjects
without the syndrome.!?

As shown in Figure 1, bilirubin is one of the effector
molecules of the cytoprotective enzyme heme oxygenase.!!
Before its excretion into the bile, it is conjugated by UDP
glucuronosyl transferase 1A1 (UGT1A1l). In the Gilbert
syndrome, the conjugation and thus excretion of bilirubin is
hampered as a result of an inactivating TA-repeat poly-
morphism in the promoter region of the gene coding for
UGT1A1.'2 As reported recently, this polymorphism contrib-
utes substantially to the variability in bilirubin levels.!* Not
surprisingly, UGT1A1 has been suggested as an interesting
drug target for the prevention of cardiovascular disease.!*
Atazanavir is an HIV-1 protease inhibitor licensed for the
treatment of HIV infections and is known to inhibit UGT1A1
activity.'> As such, treatment with atazanavir closely resem-
bles the Gilbert syndrome.
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Figure 1. Bilirubin is one of the effector molecules of heme oxy-
genase (HO), which breaks down heme into carbon monoxide
(CO), iron (Fe) and biliverdin. Biliverdin is transformed to bilirubin
by biliverdin reductase (BVR). Bilirubin is conjugated by
UGT1A1. Like the Gilbert syndrome, atazanavir attenuates
UGT1A1 activity.

Subjects experiencing type 2 diabetes mellitus (T2DM) are
particularly prone to the detrimental consequences of cardio-
vascular disease. Endothelial dysfunction can be demon-
strated even early in the disease and is thought to be crucial
in the development of atherosclerosis.!® As the prevalence of
diabetes is increasing worldwide and is expected to double to
366 million subjects during the next 2 decades,'” the preven-
tion of cardiovascular disease in this population is of utmost
importance. Parallel to the above-mentioned observational
data, the Gilbert syndrome has been associated with a
significantly lower risk of cardiovascular disease in subjects
with T2DM.!8

Despite the strong evidence derived from preclinical and
observational data, human experiments exploring the benefi-
cial effect of bilirubin on cardiovascular disease have, to the
best of our knowledge, not been published so far. The aim of
this double-blind, placebo-controlled crossover study was to
test the hypothesis that elevation of the serum bilirubin level
by experimental inhibition of UGT1Al activity would be
accompanied by an improvement of endothelial function in
subjects experiencing T2DM.

Methods

Subjects with T2DM were recruited through local advertising.
Individuals were not admitted to the study if they had a positive
history of smoking, drug abuse, or macrovascular complications of
diabetes. Subjects had to be at least 18 and no older than 70 years of
age. The body mass index was allowed to range from 18 to 35 kg/m?.
All hyperglycemia treatment regimens, including diet, oral medica-
tion, and insulin therapy, were accepted. Subjects were prohibited
from using vasoactive medication, aspirin, or antioxidant vitamin
supplements, as these drugs could influence endothelial function. To
avoid pharmacokinetic interactions with atazanavir, any use of
gastric acid suppressive medication and statins was discontinued
during participation starting 4 weeks before the first treatment
period. Subjects were enrolled only if they accepted such treatment
interruption during participation. All subjects gave written informed
consent before the screening visit. Subjects with clinical evidence of
cardiac or pulmonary disease and subjects with laboratory evidence
of renal or hepatic abnormalities were excluded. Finally, subjects
were genetically tested for the presence of the Gilbert syndrome and
excluded if positive. The study protocol was approved by the local
Medical Research Ethics Committee and consistent with the Decla-
ration of Helsinki.

In a double-blind and randomized crossover study, subjects
received a 3-day atazanavir treatment (Reyataz, Bristol-Myers
Squibb BV, Woerden, the Netherlands) and a 3-day placebo treat-
ment, with a washout period of at least 3 weeks in between. To
amplify the level of hyperbilirubinemia, the regular dose regimen of
atazanavir in HIV patients (either 400 mg once daily or 300 mg
boosted with ritonavir 100 mg once daily) was modified to an
alternative regimen of 300 mg twice daily to be taken with food. If
reflected by the area under the curve, the exposure to atazanavir
caused by this dose regimen does not exceed the exposure associated
with both regular dose regimens.!®
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Figure 2. The vasodilator responses to acetylcholine and to ni-
troglycerin were consecutively assessed. Both vasodilators were
administered in 3 increasing doses. Dosages were adjusted to
forearm volume (depicted as ug/min per dL forearm volume). A
30-minute pause (equilibration period) was made before admin-
istration of each agent. S indicates saline.

On the fourth day of both treatment periods, forearm blood flow
(FBF) was assessed by venous occlusion strain gauge plethysmog-
raphy. A time schedule of these flow assessments is provided in
Figure 2. All experiments were performed in the morning after an
overnight fast in a temperature-controlled room (23°C), with the
subjects in a supine position. If needed, dose adjustments of
hypoglycemic agents were recommended during the evening and
early morning before the assessments. Capillary glucose levels were
monitored. The brachial artery of the nondominant arm was cannu-
lated with a 27-gauge needle (kindly supplied by B. Braun Medical
BV, Oss, the Netherlands) for intraarterial administration of saline,
acetylcholine (Miochol, Thea Pharma NV, Zoetermeer, the Nether-
lands), and nitroglycerine (Nitropohl, Pohl-Boskamp, Hoofddorp,
the Netherlands). FBF was assessed during the successive adminis-
tration of 3 increasing doses of acetylcholine (0.5, 2, and 8 pg/min
per dL of forearm tissue) and nitroglycerin (0.125, 0.25, and 0.5
wng/min per dL). Both series were preceded by a 30-minute pause and
started with the assessment of baseline FBF during saline infusion.
Each dose was administered for 5 minutes. FBF was recorded
simultaneously on both the infusion and the control arm by venous
occlusion plethysmography using mercury-in-silastic strain gauges
(Hokanson EC4, Hokanson, Inc). The upper arm cuffs were inflated
using a rapid cuff inflator (Hokanson E-20, DE Hokanson, Bellevue,
WA). Wrist cuffs were inflated to 220 mm Hg during each series.
Immediately after completion of FBF assessments, blood pressure in the
supine position was assessed with an aneroid sphygmomanometer.

Before the experiment, venous blood was drawn. Hematologic
parameters were assessed using an ADVIA 120 Hemalog (Bayer
Diagnostic, Tarrytown, NY), and chemical parameters, including
bilirubin levels, were determined using an Aeroset (Abbott Labora-
tories, Abbott Park, Ill). In addition, plasma samples were stored at
—80°C for determination of atazanavir plasma levels, antioxidant
capacity, and biomarkers of vascular inflammation. Atazanavir
plasma levels were determined using a modification of a validated
high-performance liquid chromatography method with UV detection
as published previously.?® Plasma antioxidant capacity was assessed
by means of the ferric reducing ability of plasma assay, according to
the method of Benzie and Strain.?! Ferric reducing ability of plasma
values were obtained using a 7-point calibration curve of known
amounts of Fe** and expressed in mmol Fe*"/L. The concentrations
of soluble vascular cell adhesion molecule-1 (sVCAM-1) and soluble
intercellular adhesion molecule-1 (SICAM-1) were determined by a
multiplex assay (Bio-plex cytokine assay, Bio-Rad, Hercules, Calif,
at Luminex 100, Luminex Corp). The concentration of von Wille-
brand factor (VWF) was determined by enzyme-linked immunosor-
bent assay (Progen Biotechnik, Heidelberg, Germany; R&D Sys-
tems, Minneapolis, Minn). To enable the determination of bilirubin
levels after deblinding of the study, 1 additional lithium heparin
plasma sample was stored at —80°C in a brown Eppendorf tube.

Statistical analysis was performed using the SPSS (version 16.0)
and SAS (version 8.2) software packages. The paired-samples ¢ test
was used to compare gaussian distributed data. For analysis of the
FBF measurements, the last 5 flows of each dose were used. Before
analysis, logarithmic transformation was performed to obtain a
gaussian distribution. The flow data were then averaged per dose and
subsequently analyzed in a mixed linear model with random factor
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Figure 3. Increase in FBF in response to the 3 increasing dos-
ages of acetylcholine and nitroglycerin, depicted as percentage
from baseline. Error bars indicate standard errors of the mean.
Black columns represent placebo treatment, and white columns
represent atazanavir treatment. Statistical analysis was per-
formed on the log-transformed data depicted in table 3.

subjects and fixed factors treatment and dose. In a post hoc analysis,
the atazanavir level, the bilirubin level following atazanavir treat-
ment, the baseline level of glycohemoglobin, and the time since
diagnosis were included in the model to explore the possible impact
of these factors on the degree of therapeutic response. Flow data are
presented in 3 ways. Figure 3 displays the original data in terms of
percentage from baseline. The log-transformed data used for analysis
are presented in Table 3. The data discussed in the text are medians
instead of averages of the original flow data to approximate the effect
of logarithmic transformation. Statistical significance was accepted
at the 95% confidence level (P=0.05).

Results

Eighteen nonsmoking subjects with T2DM and a negative
history for cardiovascular disease were recruited and gave
written informed consent. Two of them were excluded during
screening, one because of a genetically confirmed Gilbert
syndrome and the other because of an observed tendency
toward vasovagal collapse, which would have interfered with
the assessment of FBF. Based on a data review following
completion of the study, 1 of the 16 participating subjects was
excluded because of a highly inaccurate intake of study
medication, as well as an exceptionally low quality of the
FBF assessments. This decision was made before the deblind-
ing procedure. Based on post hoc analysis, inclusion of this
subject would have resulted in a higher level of significance.
The results presented are those of the remaining 15 subjects.

Characteristics of the study population are shown in Table
1. We examined 6 males and 9 females with an average body
mass index of 28 kg/m?. The mean history of diabetes was 5.9

Table 1. Characteristics of Study Population (n=15)
Characteristic Value
Sex 6 men, 9 women

Age (years)

Body mass index (kg/m?)
HbA1c (%)

Treatment regimen

61 (6, 51 to 70)
28 (4,18 10 35)
6.8 (1.1,5.5109.8)
3 diet only
10 metformin
7SU
2 insulin
9 statin

Data are given as mean (SD, range); frequency of treatment regimens is
given as number of subjects. HbA1c indicates average glycated hemoglobin;
SU, sulfonyl urea derivates.

February 2011

Table 2. Laboratory Results After Atazanavir and
Placebo Treatment

Placebo Atazanavir P Value
Bilirubin (wmol/L) 7(1) 64 (21) <0.01
Glucose (mmol/L) 4 (0.6) 5(0.7) 0.78
LDL (mmol/L) .7(0.2) 6(0.2 0.61
FRAP (mmol Fe2*/L) 1.26 (0.06) 1.66 (0.07) <0.001
VvWF (U/mL) 1.46 (0.13) 1.18(0.12) 0.05
sVCAM-1 (pg/mL) 183 (10) 191 (8) 0.14
SICAM-1 (pg/mL) 158 (7) 153 (7) 0.37

Data are given as mean (SEM). FRAP, ferric reducing ability of plasma.
Reported P values are the result of paired t tests.

years, and the average glycohemoglobin level was 6.8%.
Three subjects were treated with a diet only. The other 12
subjects were treated with either monotherapy or combination
therapy containing a biguanide, sulfonylurea, or insulin. Nine
of 15 subjects were taking statins on inclusion and agreed
with interruption during participation. As a result of the
exclusion criteria, none of the subjects was using aspirin or
antihypertensive medication.

Total bilirubin levels after placebo and atazanavir treat-
ment are shown in Table 2. The average bilirubin level
following placebo treatment amounted to 7 wmol/L (0.4
mg/dL). As anticipated, the 3-day course of UGT1Al inhi-
bition resulted in significantly elevated bilirubin levels, with
an average of 64 umol/L (3.8 mg/dL) and a range of 35 to
110 pmol/L (2.1 to 6.4 mg/dL). Because of the short term of
the atazanavir treatment, significant tissue accumulation and
thus clinically perceptible jaundice occurred in only 1 case. In
this subject, jaundice arose on day 4 after completion of the
FBF assessments.

When compared with placebo, a significant improvement
of antioxidant capacity was observed following atazanavir
treatment (P<<0.001). In addition, atazanavir treatment was
associated with a decrease in plasma vWF (P=0.052).
Plasma levels of sVCAM-1 and sSICAM-1 were not affected.
Atazanavir treatment did not influence the plasma levels of
fasting glucose and LDL cholesterol.

The results of FBF experiments are depicted in Figure 3
and Table 3. Baseline flow after placebo treatment was

Table 3. Forearm Blood Flow Data After
Logarithmic Transformation

Placebo Atazanavir P Value

Baseline 0.25 (0.04) 0.18 (0.05)

ACh1 0.75(0.07) 0.78 (0.07)

ACh2 1.01 (0.06) 1.05 (0.06) 0.036
ACh3 1.25 (0.06) 1.33 (0.04)

Baseline 0.25 (0.05) 0.21(0.04)

NTG1 0.64 (0.04) 0.64 (0.04)

NTG2 0.72 (0.05) 0.73(0.04) 0404
NTG3 0.85 (0.04) 0.81(0.04)

ACh1, ACh2, and ACh3 indicate acetylcholine dosages of 0.5, 2.0, and 8.0
ng/min per dL, respectively; NTG1, NTG2, and NTG3, nitroglycerin dosage of
0.125, 0.250, and 0.500 wg/min per dL, respectively. SEM values are shown
in parentheses.
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comparable to baseline flow after atazanavir treatment (1.8
and 1.5 mL/min per dL tissue in the intervention arm and 1.6
and 1.7 mL/min per dL in the control arm). Neither acetyl-
choline infusion nor nitroglycerin infusion affected the blood
flow of the contralateral forearm (data not shown).

Intraarterial infusion of acetylcholine induced an increase
in FBF at all 3 doses after both placebo and atazanavir
treatment. Compared with placebo, atazanavir treatment was
accompanied by a significantly enhanced vasodilator re-
sponse to acetylcholine. At the highest acetylcholine dose, 8
pg/min per dL, FBF amounted to median levels of 19.9 and
21.9 mL/min per dL following placebo and atazanavir treat-
ment, respectively. Statistical analysis on the log-transformed
flow data of all 3 acetylcholine dosages revealed a relative
increase of 12% without relevant differences between the 3
acetylcholine dosages. The improvement of acetylcholine
response was not influenced by the atazanavir level, the
bilirubin level following atazanavir treatment, the glycohe-
moglobin level at baseline, or the duration of diabetes before
inclusion (based on post hoc analysis).

Intraarterial infusion of nitroglycerin also induced a signif-
icant increase in FBF at all dosages. Contrary to acetylcho-
line, the extent of vasodilator response to nitroglycerin was
not influenced by our intervention with atazanavir. At the
highest nitroglycerin dose, 0.5 wg/min per dL., FBF amounted
to median levels of 7.3 and 7.1 mL/min per dL following
placebo and atazanavir treatment, respectively.

Discussion

A multitude of preclinical and observational studies have
credited bilirubin with the potential to prevent cardiovascular
disease. To our knowledge, this is the first study addressing
the concept of experimental hyperbilirubinemia in humans.
Our findings demonstrate that even a 3-day atazanavir treat-
ment improves endothelial function in subjects with T2DM.

Endothelial dysfunction is strongly related to the develop-
ment of atherosclerosis and the resulting cardiovascular
risk.?? Central in the pathogenesis of endothelial dysfunction
is the decreased availability of endothelial nitric oxide
(NO).23 One of the key factors leading to limited NO
availability is the increase in intracellular oxidative stress. A
substantial part of the production of reactive oxygen species
is supposed to stem from NADPH oxidase activity.?*

Addressing the mechanistic importance of oxidative stress,
several groups have studied the effect of antioxidant treat-
ment strategies, among which is intraarterial infusion of
ascorbate. Underscoring the fundamental role of oxidative
stress, improvement of endothelial function following paren-
teral administration of ascorbate was observed in subjects
experiencing various conditions, such as hypercholesterol-
emia,?> hypertension,?® and both insulin-independent?” and
insulin-dependent?® diabetes mellitus. Bilirubin is a powerful
endogenous antioxidant, and its clinical relevance is highly
suggested by the results of preclinical and observational
studies. As such, artificial elevation of the serum bilirubin
level might be an attractive and long-term workable approach
for the prevention of cardiovascular disease.'*?° Our current
data on the significant improvement of antioxidant capacity

Atazanavir Improves Endothelial Function 461

and endothelial function observed after a 3-day atazanavir
treatment strongly support the potential of this strategy.

Biomarkers of vascular inflammation such as vWF,
sVCAM-1 and sSICAM-1 have been shown to be related to the
risk of cardiovascular complications in T2DM.3° In addition,
bilirubin has been shown to attenuate H,O,-induced endothe-
lial leukocyte rolling and adhesion in vivo.3! The observed
trend toward a decrease in serum VWF is in line with the
observed improvement of endothelial function and may
reflect a decrease in vascular inflammation in our subjects.
The limited size of our study population and the short
duration of atazanavir treatment may account for the fact that
sVCAM-1 and sICAM-1 did not alter.

Several limitations should be addressed, as they may have
influenced the outcome of our study. First, there are no data
available on the bilirubin levels needed to obtain maximally
protective antioxidant effects in vivo in humans. In our
design, we opted for a short-term exposure, aiming at
moderately elevated bilirubin levels. The 3-day treatment
regimen resulted in a mean bilirubin level of 64 wmol/L (3.8
mg/dL). Because we did not observe a relationship between
bilirubin levels and the vasodilator response to acetylcholine,
this may indicate that we reached the plateau of the
concentration-effect curve. Considering the relatively low
bilirubin levels and the still marked cardiovascular protection
observed in subjects with the Gilbert syndrome, long-term
treatment regimens aiming at bilirubin levels in the subclin-
ical range may be sufficient as well. This would favor
long-term application of a lower dose of atazanavir, as our
current regimen would definitely cause an unacceptable
degree of jaundice during prolonged treatment. Further re-
search is needed to address this topic.

Second, atazanavir itself may have a direct beneficial
impact on endothelial function. In a previous study, 400 mg
of atazanavir once daily did not influence endothelial func-
tion in healthy volunteers.?> In our study, however, we
administered a different dose. Moreover, we included patients
with T2DM instead of healthy subjects. Therefore, we do not
know whether our dose regimen of 300 mg twice daily might
affect endothelial function in healthy subjects. Besides, bili-
rubin is obviously not the only substance conjugated by
UGTI1AL. Itis likely, therefore, that the Gilbert syndrome and
atazanavir treatment affect plasma levels of substances other
than bilirubin. Theoretically, such substances, as well as
atazanavir itself, could cause the observed improvement of
vascular function ascribed to bilirubin. Nevertheless,
UGT1AL1 inhibition and parenteral administration of bilirubin
comparably attenuated oxidative stress and hypertension in
an angiotensin II-dependent animal model.>* In our opinion,
this supports a causal and dominant role of bilirubin. A
similar approach with parenteral administration of bilirubin in
humans may provide a definite proof of its beneficial impact
on cardiovascular disease.

Finally, HIV protease inhibitors are commonly connoted
for their contribution to cardiovascular complications in HIV
patients.>* In contrast to several other protease inhibitors,
however, atazanavir does not affect glucose tolerance, plasma
cholesterol level, or endothelial function in healthy volunteers
at a dosage of 400 mg once daily.3? Consistently, we did not
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observe changes in plasma glucose or plasma cholesterol
levels at a twice-daily dosage of 300 mg, nor did we find a
relationship between atazanavir plasma levels and the ob-
served improvement of endothelial function.

In contrast to the promising data on the parenteral use of
ascorbate, clinical trials with orally administered exogenous
antioxidants such as vitamins C and E have been generally
disappointing.35-3¢ Several explanations have been put for-
ward, from the inability to obtain sufficiently elevated intra-
cellular levels by oral dosing regimens to the inability of
vitamins C and E to compete with highly reactive molecules
such as peroxynitrite.'® Notably, bilirubin is one of the most
potent scavengers of reactive oxygen species in nature.’” As
our strategy evidently fortifies an endogenous and physiolog-
ically relevant antioxidant resource, it may overcome the
flaws of previous treatment strategies with exogenous antioxi-
dants. Besides, bilirubin has shown to inhibit NADPH oxidase
activity in vitro.®® Given the importance of NADPH oxidase
activity in the pathogenesis of diabetes related endothelial
dysfunction, this property may contribute to the beneficial
effects on endothelial function observed in our diabetic subjects
too.

In summary, our study is the first to address the concept of
vascular protection by experimental hyperbilirubinemia in
humans. Given the overwhelming preclinical and observa-
tional data on bilirubin and cardiovascular disease, it is in our
opinion very likely that the improvement of endothelial
function and plasma antioxidant capacity observed after
atazanavir treatment should be attributed to the associated
hyperbilirubinemia. Indisputable evidence on this should be
provided by the use of alternative human models for exper-
imental hyperbilirubinemia. Finally, optimally protective
plasma levels have to be established. If potent at only mildly
elevated bilirubin levels, long-term UGT1AL1 inhibition may
prove a novel pharmacological approach to prevent cardio-
vascular disease in T2DM.
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