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Abstract

Due to lacking predictors of depression recovery, successful treatment of major depressive disorder (MDD) is
frequently only achieved after therapeutic optimization leading to a prolonged suffering of patients. This study aimed
to determine neural prognostic predictors identifying non-remitters prior or early after treatment initiation. Moreover,
it intended to detect time-sensitive neural mediators indicating depression recovery. This longitudinal, interventional,
single-arm, open-label, phase IV, pharmacological functional magnetic resonance imaging (fMRI) study comprised four
scans at important stages prior (day 0) and after escitalopram treatment initiation (day 1, 28, and 56). Totally, 22
treatment-free MDD patients (age mean = SD: 31.5 + 7.7; females: 50%) suffering from a concurrent major depressive
episode without any comorbid DSM-IV axis | diagnosis completed the study protocol. Primary outcome were neural
prognostic predictors of depression recovery. Enhanced de-activation of anterior medial prefrontal cortex (@mPFC,
single neural mediator) indicated depression recovery correlating with MADRS score and working memory
improvements. Strong dorsolateral PFC (dIPFC) activation and weak dIPFC-amPFC, dIPFC-posterior cingulate cortex
(PCQO), dIPFC-parietal lobe (PL) coupling (three prognostic predictors) hinted at depression recovery at day 0 and 1.
Preresponse prediction of continuous (dIPFC-PL: R2day1 =55.9%, 95% Cl: 22.6-79%, P < 0.005) and dichotomous
(specificity/sensitivity: SP/SNgay1 = 0.91/0.82) recovery definitions remained significant after leave-one-out cross-
validation. Identified prefrontal neural predictors might propel the future development of fMRI markers for clinical
decision making, which could lead to increased response rates and adherence during acute phase treatment periods.
Moreover, this study underscores the importance of the amPFC in depression recovery.

Introduction

Major depressive disorder (MDD) is highly prevalent
leading to increased disability and mortality’. About two-
thirds of all patients suffer from residual symptoms after
first-line treatment with selective serotonin reuptake
inhibitors (SSRIs)*>. As a consequence, treatment
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optimization is common clinical practice resulting in a
prolongation of disability and suicidal ideation®”.

The clinical necessity of depression recovery (DR)
stratification®® has propelled research of clinical’,
genetic'®™"?, and neural predictors'®. Several studies
highlighted the role of the anterior medial prefrontal
cortex (amPFC), as well as the anterior (ACC) and pos-
terior cingulate cortex (PCC) in the prediction of DR after
SSRI treatment'*~'°. Support is also provided by studies
applying different treatment modalities'’’® and by
research underscoring the importance of these brain
regions in MDD pathobiology”>'. Beyond the amPEC,
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regions such as the anterior insula'®*?, or dorsolateral

PEC (dIPEC)**** were further suggested as predictors of
DR.

Unfortunately, even a large body of cross-sectional
imaging studies has failed to conclusively identify brain
mechanisms responsible for DR”®'3?>2¢ This lack of
consistency is not surprising considering the temporal
dynamics of interactions between mentioned brain sys-
tems'? affecting the individual outcome over the course of
illness**®, One promising approach assessing such
longitudinal interactions is to study neural mediators and
prognostic predictors of DR, which have hardly been
investigated so far'>*> despite their obvious clinical
implications®®'***3%, In this context, a prognostic pre-
dictor is defined as a treatment- and recovery-preceding,
cross-sectional  imaging characteristic related to
DR'>**3! Hence, it is capable of identifying non-
responders prior any clinical sign of improvement. Con-
sequently, it is uncorrelated to changing neuroimaging
measures along recovery and thus time-invariant'>'?, A
neural mediator, however, exhibits typical changes that
might reflect neural processes unfolding in concert with
recovery from depression'>***!, Hence, it is per definition
a time-sensitive imaging measure correlating with DR'>'3,
Importantly, predictors based on longitudinal data differ
substantially from a single predictor originating from a
cross-sectional study design lacking any distinction
between time-sensitive (mediator) and time-invariant
(prognostic predictor) brain processes'®*”***, As a cri-
tical clinical consequence, validated prognostic predictors
would provide objective markers of nonresponse that are
available prior treatment initiation, whereas mediators
support decisions of clinicians, researchers and drug
developers along treatment'®. Previous studies®*>°
investigated unspecific “prognostic predictors”™' to fore-
see nonresponse across treatment groups. In contrast to
“prescriptive predictors”™ of treatment-specific out-
comes, these findings might improve our understanding
of mechanisms involved in a suboptimal DR that are not
targeted by current treatments to propel future
developments.

The primary goal of this exploratory, longitudinal,
pharmacological functional magnetic resonance imaging
study (phMRI) was to determine neural prognostic pre-
dictors of DR. Moreover, we expected to gain insights into
the temporal dynamics of DR by assessing neural med-
iators'®*”?%33 along treatment. Previous clinical®’~*° and
imaging studies®®™** provide compelling evidence that
highly persistent cognitive symptoms such as memory
deficits or rumination are related to unfavorable illness
course in terms of onset, DR, chronicity and future
relapse. However, a more direct cognitive measure is
required for a clinical application*’. The frequently used
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n-back working memory (WM) task*® is well suited to
assess these underlying cognitive functions as the inter-
action between networks of cognitive control (e.g., the
dIPFC/fronto-parietal control network)*>** and emo-
tional processing (e.g., the amPFC/default mode network,
DMN)***, Particularly the n-back task-negative DMN™*®
has been less prone to artifacts as compared to other
standard paradigms applied in MDD research®”*®, Esci-
talopram was chosen as treatment, because it is the most-
selective® and most-prescribed SSRI worldwide®?®. Dur-
ing this 9 weeks lasting clinical trial, all 22 MDD patients
underwent 4 scanning sessions resulting in a total of 88
functional acquisitions. Four scanning sessions were
performed: at baseline (day 0, d0), after initial escitalo-
pram treatment (day 1, d1), and twice in monthly intervals
(day 28 and day 56), where a clinical response is expect-
able. First, we determined neural predictors of DR within
an activation analysis. Next, we performed functional
connectivity (FC) analyses for significant brain regions in
order to investigate findings on a brain systems level.
Finally, we assessed the impact of neural predictors of DR
on cognitive performance and clinical parameters.

Methods and materials
Subjects

MDD outpatients were recruited at the outpatient clinic
or by online and bulletin board advertisements. Patients
were invited to the Department of Psychiatry and Psy-
chotherapy at the Medical University of Vienna (MUV) to
participate in this longitudinal, interventional, single-arm,
open-label, phase IV phMRI study. Enrollment was under
supervision of LP after a comprehensive clinical assess-
ment including previous medical and psychiatric history,
neurological, and medical examinations such as routine
laboratory testing, electrocardiography, and blood pres-
sure measurement. The following inclusion criteria were
applied: (1) MDD diagnosis according to DSM-IV (Ger-
man Structured Clinical Interview, SCID-I)*° and absence
of any other axis I disorder, (2) Montgomery-Asberg
Depression Rating Scale (MADRS) score >20 and <30, (3)
age between 18 and 50 years, (4) right-handedness, and
(5) willingness to provide informed consent and ability to
be managed as outpatient. Detailed exclusion criteria are
listed in the supplement. Out of 26, 22 included patients
completed the study protocol (Figure S1). Reasons for
study dropout were: corrupted MRI data (n = 1), lacking
adherence to the study protocol due to increased anxious
distress (n =2), and exclusion due to medical reasons
unrelated to the study medication (n=1). The study
protocol was approved by the local Ethics Committee
(1060/2010) according to the Declaration of Helsinki.
Please note four deviations after trial registration: (1) less
subjects enrolled due to lower drop-out rates, (2)
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inclusion of healthy controls (HC), (3) one scan (d28)
added as we recognized the strength of a longitudinal
design before enrollment, and (4) more importance
attached to the MRI-outcome, because genetic effects are
envisioned as small and below clinical importance'®.

Patient recruitment, scanning and data analysis took
place between 2011 and 2017. All patients underwent 4
MRI scanning sessions prior (d0), 4-8 h (d1), 4 (d28), and
8 weeks (d56) after escitalopram treatment initiation.
Imaging data of gender- and age-matched HC were
retrieved from a previously published cross-sectional
study® subserving as control group for untreated
patients (d0). Escitalopram dosing reflected clinical
practice with a fixed dose of 10 mg and the option to
increase to 20 mg after d28 until the end of study visit in
case of nonresponse (n =9). The primary measure of DR
was defined as percent change between pretreatment (d0)
and end-of-treatment (d56) MADRS scores: DR = (1-
MADRS 456/ MADRS 40)¥100. MADRS was utilized to cal-
culate DR due to its superior sensitivity to symptom
change and its dominant use in clinical trials investigating
escitalopram®”. Clinical variables and interviews including
the Hamilton Rating Scale for Depression (HAMD-17)
and Anxiety (HAMA), and the Clinical Global Impres-
sions (CGI) scale were employed to evaluate clinical
prognostic predictors of DR and to exclude confounding
collinearity (Table 1; Tables S2 and S3).

Imaging

Subjects performed the mn-back task comprising two
levels (0-back, 2-back) in each of the four longitudinal
MRI sessions. Longitudinal WM performance defined*’ as
percent correct responses (2-back accuracy, %) was cor-
related with clinical and imaging data (Fig. 2b, Table S2).
Data from a 3T Siemens TRIO scanner (12-channel
standard head coil, Siemens Healthcare Systems, Ger-
many) was preprocessed with AFNI (http://afni.nimh.nih.
gov/afni/) implemented into an R framework (http://cran.
r-project.org/), as described previously’® and in the
supplement.

Local activation

Second-level analysis of longitudinal activation data
utilized a linear-mixed effects model (3dLME) that
included first-order autocorrelations between consecutive
sessions®>*>, To find time-invariant prognostic predictors
of DR, we calculated the DR main effect on neural acti-
vation across scan sessions'>*%3!, To detect time-sensitive
neural activation that could mediate DR, the interaction-
term of DR and scan session was calculated'>3%3. All
computed models further included age, gender, and scan
session as nuisance variables. Random effects were
defined for intercept and slope across scan sessions to
improve generalizability>*>".
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Context-dependent and context-independent functional
connectivity

Second-level analyses were performed on seed-to-voxel
FC maps in analogy to our activation analysis by using
3dLME®**?, Context-independent FC analysis correlated
time-series after removing task-evoked co-activations*>*”.
Psycho-physiological interaction (PPI) analyses mapped
the integration of seed regions specifically during 0B and
2B conditions, respectively. Activation analyses identified
two significant clusters that defined our seed regions of
interest (ROIs: amPFC mediator/dIPFC prognostic pre-
dictor of DR; red/purple, Fig. 1a).

Post hoc statistics and plots

Correlations between 2B accuracy, MADRS scores and
all four imaging clusters were calculated (Fig. 2). DR
outcome was primarily defined continuous to avoid power
loss entailed by artificial dichotomization®®. Still, clinical
decision-making benefits from the prediction of dichot-
omized endpoints (MADRSys6). Hence, post hoc receiver
operating characteristics (ROC, Fig. 3, Figure S5, Table
S5) illustrate the prediction of a dichotomous endpoint
defined as the median-split corresponding to MADRS 54
values <5 for remitters and >10 for nonremitters and
complying with clinical cut-offs for remission®’. Leave-
one-out cross-validation (CV) was applied to improve
generalizability, comparability and to avoid overfitting®
(Table 2, Table S5). Statistics were prepared in R 3.1.2
(http://cran-r-project.org/) on extracted means of sig-
nificant clusters (P <0.05 corrected, two-tailed). All
models combining several predictors (Fig. 3b and Figures
S4 and S5) were based on a uniformly weighted sum of
values that were scaled and centered before. This additive
score is envisioned as more intuitive and robust than
using optimized weights for each predictor that likely
entail overfitting®®.

Results
Demographics, clinical characteristics, and predictors

A total of 22 adult MDD patients (22—46 years; mean +
SD =31.5+7.7; 50% females) with a concurrent major
depressive episode completed the study protocol. A total
of 66 HC were exactly matched for patients’ gender (50%
females), but were significantly younger also due to the
relatively large number of HC (2243 years; mean + SD =
26.3 + 3.4; £(24) = 3.1, P=0.005). Patients (Table 1) were
unmedicated for at least two months at dO and suffered
predominantly from a moderate MDE (27% mild, 55%
moderate, 18% severe)®”. A large proportion of patients
was antidepressant naive (41%) and had never received
previous psychopharmacological (50%) or psychother-
apeutic treatment (55%). Clinical predictors revealed a
trend towards better DR for patients with no previous
antidepressant treatment (Table 1, left). Remaining
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Comparison between clinical and imaging predictors of DR available at baseline (d0/d1)

Top predictors % (s)/% (Q1/Qs) R? Clgs PRESS Prpr Other % (s)/% (Q1/Qs)
assessments
Clinical information Clinical
information
TN (n) 12 14 0-473 19416% A HAMD (%) 67 (32)
MDEi (n) 7 22 0-287 22471 ns. A HAMA (%) 633 (27.3)
Adolescent onset (n) 1 15 0-26.7 23055 n.s. A CGI-S (%) 033 (0.17/0.5)
MADRS 27 (2.7) 15.8 0-49.1 24415% HAMD 19 (43)
HAMA 21.1 (4.9)
Imaging measures CGI-S 6 (5/6)
dIPFC-PLy(qo,1) 59.1 264-80.8 10746* 2B accuracy 654 (24.1)
MVs o1y 63 314-83 11423* Age (years) 315 (7.7)
dIPFC-PLy; 558 226-79 11437%* Gender (n female) "
MV 554 22.1-78.7 12692** Education (years) 123 (1.13)
MVyo 376 6.6-67.5 12719** Previous PT (n) 10
dIPFCs (0,1 53 196-774 12900** (Su)'\cide attempts 3
n)
dIPFC-amPFCq; 46.9 13.8-73.8 13083** WST 331 (4.5

Top baseline clinical and imaging predictors of DR are indicated by lowest PRESS values (left column). Other assessed clinical characteristics (right column) including
secondary outcome measures (A = % change d0-d56) are shown as mean (SD) or median (Q 1/3), where appropriate. All data were CV to improve generalizability and
comparability between models. Imaging predictors outperformed higher baseline MADRS values and TN as the only trendwise, uncorrected clinical characteristics
related to better DR. Secondary outcome measures (A = % change d0-d56) and less predictive clinical characteristics were presented (second column) as mean (SD)
or median (Q 1/3), where appropriate. P, uncorrected P value; Pepg, false-discovery-rate corrected value; P<0.005 corrected”, P<0.05 corrected * P<0.10
uncorrected*; 2B 2-back, C/ confidence interval, CV leave-one-out cross-validation, DR depression recovery, TN antidepressant treatment naive, HAMD/HAMA Hamilton
depression/anxiety rating scale, MADRS Montgomery-Asberg depression rating scale, MDEi concurrent Major Depressive Episode is index episode, MV multivariate
model, n number, PT psychotherapy, PRESS predicted residual error sum of squares, Q quartile, R? variance, SD standard deviation, d day, WST Wortschatztest (German
vocabulary scale), amPFC anterior-medial PFC, dIPFC dorsolateral PFC, PL parietal lobe, PCC posterior cingulate cortex

baseline characteristics including WM performance did
not predict later DR.

Neural mediator of depression recovery and behavioral
correlate

The recruitment of neural networks during task per-
formance was comparable to previous reports*® (Supple-
ment, Figure S2, Table S1). Neural mediators of DR were
defined">?**! as time-sensitive interaction effects of DR
on brain activation for all scan sessions (d0, d1, d28, and
d56). One cluster comprising the amPFC reached statis-
tical significance (orange, Fig. 1, Table 2). After clinical
response, enhanced de-activation in this region was pre-
dictive for later DR measured from baseline to end-of-
study (Fig. 1). Moreover, amPFC de-activation was related
to depression severity (Fig. 2a, Table S2) and WM per-
formance improvements (Fig. 2b, pq»s as6 < 0.05). Average
WM performance improved along with depression
symptom remission mainly between sessions d1 and d28
and to a level comparable to HC (Fig. 2a, Table S2). This
cannot simply be explained by training effects, which are
expected to be maximally between dO0 and d1 due to
novelty effects. Activation changed but remained within
the range observed in HC (Fig. 1, density plot).

Neural prognostic predictors of DR

Neural prognostic predictors of DR were define
as the time-invariant main effect of DR for each scan
session. Our analysis revealed one significant activation
cluster encompassing the right dIPFC and parts of the

13,30,31
d

adjacent anterior insula (green, Fig. 1, Table 2). Both
preresponse sessions (d0, 1) predicted a beneficial DR in
case of strong dIPFC predictor activation, as confirmed by
conservative CV (Table 1, Table S3). Next, the amPFC
and dIPFC clusters resulting from activation analyses were
used as seeds for context-independent and context-
dependent (PPI) FC analyses. Context-independent FC
of the dIPFC seed revealed two significant clusters within
the DMN: PCC and amPFC (lightblue/blue, Fig. 1, Table
2). Context-dependent FC analysis showed an interaction
of dIPFC-PL integration and OB activation in the parietal
lobe (PL, purple, Fig. 1, Table 2). Hence, responders
showed weaker dIPFC-PL integration during the OB
conditions and/or their dIPFC suppresses PL OB activa-
tion. Across all session and predictors, a weaker FC of the
dIPFC was found beneficial for DR while all values were
within the range of HC (density plot, Fig. 1).

Localization of effects in the amPFC

We noticed that the dIPFC seed revealed a predictive
cluster in the amPFC (blue, Fig. 1a), but we found no
cluster in the dIPFC or elsewhere after using the partly
overlapping anterior-perigenual amPFC seed (orange, Fig.
la) despite the undirected nature of FC analyses. Hence,
we post hoc analyzed Harvard-Oxford atlas-defined®>®'
masks (Figure S7) and spherical seeds®” (supplemental
video). The atlas-defined subgenual seed revealed the
largest prognostic predictor cluster in the dIPFC of all
three averaged ACC/amPFC masks (see Figure S7). Still,
the punctum maximum was located neither in the



Meyer et al. Translational Psychiatry (2019)9:64 Page 5 of 10
A B
patients Escitalopram 10mg 10/20mg healthy
3 day 0 day 1 day 28 day 56 subjects
L7 [ | IS | | I —— )
X
o
<
2
o
@ A
>
X
[
<
2
N
c
K]
® -
2
k3]
<
-1.04
- —_— . T
o 23
o
o
¢
N,
mediator -
(variable in time) 3
== amPFC 3
prognostic predictors e
(invariant in time) 5
== dIPFC °
mm d|IPFC-amPFC ]
— dIPFC-PCC )
== dIPFC-PL E T T T 1 T T 1 T T 1 T T
E] 0O 50 100 0 50 100 O 50 100 O 50 100 6.1
= MADRS improvement d0 to d56 [%)] distribution [%)]
Fig. 1 Neural mediator and prognostic predictors of depression recovery. a Clusters of significant prognostic value (FWE corrected) for DR (n =
22). b Neural mediator: Enhanced amPFC (orange) de-activation indicates improvements of depressive symptoms. Prognostic predictors: All four
scans showed comparable results even weeks ahead of initial clinical response. Stronger dIPFC activation (green) accompanied by weaker dIPFC-
amPFC (blue), dIPFC-PCC (cyan), and dIPFC-PL (purple) functional connectivity predicts beneficial depression recovery. Connectivity results for PL are
related to 0-back conditions and therefore context-dependent. Healthy subjects: Density plots (right column) demonstrate no significant difference
of imaging measures between MDD patients and matched healthy controls (HC) when comparing baseline data on a cross-sectional basis. amPFC
anterior medial prefrontal cortex, dIPFC dorsolateral PFC, PCC posterior cingulate cortex, PL parietal lobe, 2B-0B 2-back vs. 0-back contrast

mediator region nor in the posterior subgenual ACC (see
sACC and pACC labels in the video), but spread from
perigenual (i6) to anterior subgenual ACC regions (i8).

Cross-validation of neural predictors

The clinical significance and large effects®® of scans
conducted prior to clinical response (dO, 1) as predictors
of DR are highlighted by the conservative CV (Fig. 3a,
Table 1, Table S3). Longitudinally, prognostic predictors
tend to show the largest effects ahead of response (max.
CV R?% dIPFC-PL FCdy;, = 55.8%). Combined with other
consistency measures (Figure S3 CD; Table S4), this
indicates that timing matters, and, statistically speaking, a
low between-session interchangeability®®. Incorporating
multiple brain regions (Fig. 3b) and scans (Figure S4)
improved minimal rather than maximal predictive per-
formance, thus enhancing prognostic stability. Inclusion
of motion nuisance and clinical variables did not alter
these results (Table S3). As expected, model overfitting

occurred predominantly for multivariate models after
incorporating multiple brain regions according to differ-
ences between conservative CV and standard full sample
results (solid vs. dashed lines, Fig. 3b).

Prediction of the dichotomous remission outcome
(ROC after CV, Fig. 2, Figure S5) showed large effects for
all univariate FC prognostic predictors at baseline (Table
S5, area under the curve, AUCq4od1,5(do,1)>0.79). The
dIPFC-PL prognostic predictor provides an optimal spe-
cificity and sensitivity trade-off (Youden index =SP +
SN-1: SP/SNgo=1/0.73; SP/SNg4; 0.91/0.82) close to the
clinically important specificity-optimized (SP,.x) cut-off,
which maximizes the detection of nonremitters.

Discussion

This study aimed to identify neural prognostic pre-
dictors to anticipate suboptimal DR at four important
treatment stages prior and during antidepressant treat-
ment. Moreover, we analyzed changes of neural
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depression recovery. a Depression symptoms (first y-axis) and n-
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normalize compared to healthy subjects (right density plot). This
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performance. * trendwise significant (P < 0.10), *** significant (P <
0.05, 0.01), amPFC anterior medial prefrontal cortex, DMN default
mode network, MADRS Montgomery-Asberg Depression Rating Scale,
R? explained variance

mediators, which are thought to trace brain systems
functionally and causally related to the later clinical out-
come. Finally, we evaluated these markers in terms of
clinical use by behavioral data analysis and conservative
effect size measures.

Consistent with cross-sectional imaging studies'**>*°,
we identified potential neural markers of DR. Enhanced
amPFC de-activation (mediator) correlated with symptom
alleviation and therefore DR. In contrast, stronger dIPFC
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activation accompanied by a weaker coupling between
dIPFC-amPFC, dIPFC-PCC, and dIPFC-PL (prognostic
predictors) indicated beneficial DR*****°, These prog-
nostic predictors showed statistically and clinically sig-
nificant effects predominantly prior to clinical response.
The supplemental video shows the spatial distribution of
all effects located in the ACC/amPFC.

The detected neural mediator suggests that changes of
amPFC de-activation are crucial to mitigate depressive
symptoms*®*>%° (Fig. 1) and, specifically, persistent resi-
dual cognitive impairments*"°® (Fig. 2b) after clinical
response (d28, d56). Hence, the amPFC mediator might
inform clinical decision-making at early stages of ther-
apy'>** underlining the critical role of the DMN in
DR'*** Changes in amPEC activation, a region with
relatively high serotonin transporter density®’, were also
observed in human SSRI-challenge studies**®® and cor-
related to serotonin reuptake velocity in platelets®®. Pre-
vious longitudinal SSRI treatment studies described
functional changes within the amPFC in MDD respon-
ders'*'*7%7! Interestingly in terms of MDD treatment-
specificity, this brain region was not only related to
recovery in studies investigating serotonergic compounds,
but also other antidepressants'’, placebo effects’?, psy-
chotherapy'®, deep brain stimulation'®, and sleep depri-
vation”®. On a clinical level, the amPFC was previously
associated with rumination by using the same n-back
experiment’. This corroborates the notion that decreas-
ing amPFC activation during externally oriented tasks
(e.g., m-back) represents successful DMN suppression
necessary for cognitive performance and style improve-
ment*®*>%>™* crucial for DR,

Contrasting the mediator, the ascertained prognostic
predictors of DR were statistically significant ahead of
initial clinical response (Fig. 1). Stronger dIPFC activation
and a weaker context-independent (dIPFC-amPFC,
dIPFC-PCC) and context-dependent coupling during 0B
conditions (dIPFC-PL) showed favorable effects on DR
across all four sessions. The “cognitive neuropsychologi-
cal” model** of depression and a rich body of imaging
studies*®®® indicate that SSRIs target primarily medial
rather than lateral regions in the PFC*®”°, In line with this
model, we observed dynamic changes in the medial PFC
and persistent factors in the lateral PFC, although both
were markers for DR. These regions putatively cooperate
like a pilot (amPFC/mediator) communicating with the air
traffic control tower (dIPFC activation and FC/prognostic
predictors). If you treat pilots to help them reaching their
target, you also need a sanity check of the interplay with
the control tower. The brain system orchestrated by the
dIPFC might form such an auxiliary top-down regulation
system. The n-back task tests the capacity of this system
by increasing the limbic bottom-up interference during
less-demanding OB conditions™” in analogy to challenging
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— Cross-validated

Table 2 Neural mediator and prognostic predictors of
depression recovery

Region BA Cluster t (df) z Pvalue x y z
(mm?3)

Mediator

amPFC 32,24 2521 —341 (64) —292 00017 —6 38 10

Prognostic predictors

dIPFC 46,9 3907 606 (18) 426 <0001~ 45 16 19

dIPFC- 10 6859 —6.16 (18) —431 <0001" 10 —57 30

PCC

dIPFC- 24 5903 —552(18) —399 <0001 6 29 12

amPFC

dIPFC- 39 3813 —586 (18) —4.17 <0001 34 65 38

PL

X, y, z are coordinates in Talairach space (LPI). Family-wise error rate (FWE)
corrected P <0.005", 2B 2-back, 0B 0-back, BA Brodmann area, FC functional
connectivity, amPFC anterior-medial PFC, dIPFC dorsolateral PFC, PL parietal
lobe, PCC posterior cingulate cortex

weather conditions in a flight simulator. This might
explain the additional prognostic predictor during 0B
conditions (dIPFC-PL FCd, Fig. 1). The pattern of brain
regions involved in this system (dIPFC, PL, dorsal amPFC)

can be associated with reappraisal, selective attention and
distraction’®. These are emotion regulation strategies that
require patients to (A) actively control (B) a model-based
change while (C) explicitly holding mental representa-
tions of their goal within their mind”””®, These cognitive
capacities tested by n-back’® and other prefrontal bat-
teries were clinically related to a suboptimal course of
depression®*®! and might be important targets of com-
plementary treatments”®*>8278%,

This study highlights advantages of longitudinal phMRI
prediction studies'®*”*, However, statistical significance
is not sufficient to inform clinical decision-making®?**°
As desired in prediction, pre-response imaging markers
(Figure S4 R240,41,5(0,1)) tend to show larger effects as
compared to post-response imaging or also preresponse
clinical® markers. Prognostic predictors are con-
ceptualized as time-invariant and uncorrelated to DR
itself'>*>*°. Nonetheless, relatively large multisession
effects (Figure S4) and low between-session consistency
(Figure S3AB, Table S4) suggest that all scans contribute
unique information from distinct treatment phases with
low interchangeability®®. ROC analyses (Fig. 3) facilitate
translation of continuous DR predictors to predictors of
dichotomous remission with known statistical costs to
support decision-making as desired by most clinicians®.
These results (Fig. 3a) suggest that an automatized
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measure (dIPFC-PL FCd) obtained by a single non-
invasive 15-min fMRI is capable to improve patient stra-
tification®®. The threshold of clinically acceptable mis-
classifications might be larger in this context compared to,
e.g., screening of orphan diseases, because it critically
depends on two factors. Firstly, low economic and safety
risks of (falsely) initiated second-line treatments would
favor ordering the test, which would remain to positively
influence clinical decision making®. Secondly, the pretest
probability is favorably high due to a moderate anti-
depressant treatment response rate of 50-60%%".

This study has several limitations. Considering that
secondary analyses are nonindependent from voxel-wise
analyses, effect sizes likely remain inflated even after CV
due to circularity®®. Clinical prediction studies typically
include CV, which is the necessary tough not sufficient
step before clinical translation. This step is rarely applied
in imaging prediction studies*®® although the out-of-
sample model could dramatically change results, as shown
in our study (e.g., Figure 3). Still, our results primarily
apply to noncomorbid, moderately depressed, non-
suicidal, and rather young adult patients without any
history of previous treatment-resistance. Hence, results in
comorbid, adolescent, geriatric, suicidal, therapy-resistant
or -refractory MDD samples might differ substantially™.
Since the intention of this study was to investigate prog-
nostic predictors and mediators in a real-world clinical
scenario with higher external validity and not the efficacy
of the most prescribed antidepressant™*’>, we employed
an open-label study design without any placebo control,
randomization, or blinding. Given the existence of inter-
mixed placebo and drug effects in daily clinical practice®,
neural predictors and mediators are explicitly categorized
as nonspecific prognostic and not prescriptive predictors
of DR*7"¥” However, we feel confident that placebo
effects did not severely confound our interpretation, since
we focused primarily on the clinically more important
group of nonresponders, in which no placebo response is
expected given the absence of any relevant overall treat-
ment effect. Further, in contrast to between-group designs
(MDD vs. HC, Fig. 1), within-group designs, and, parti-
cularly, predictive studies intend to utilize heterogeneity
in neural patterns to reliably stratify patients without
necessarily understanding the underlying nosology and
etiology®”%°.

Summarizing, our phMRI study characterized the
longitudinal dynamic of neural prognostic predictors and
a mediator candidate of DR. Enhanced de-activation of
the amPFC (mediator) in remitters underscores the
importance of the DMN in DR. Weaker activation and
stronger FC of the dIPFC (prognostic predictors) was
related to insufficient DR, which highlights the possibility
to identify MDD non-remitters prior to treatment initia-
tion. If replicated, these data encourage the clinical use of
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fMRI for individual risk prediction of a suboptimal illness
course, which is urgently needed given the present
insufficient sequential treatment algorithms.
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