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I.1 Abstract 

OBJECTIVE: We evaluated the performance of a new approach on blood glucose control in a 
clinical study with type 1 diabetes patients using a generic integrated physiologically-based 
PBPK/PD model kernel within an (adaptive) MPC scheme with PID-based offset-control. 

RESEARCH DESIGN AND METHODS: Blood glucose was managed in ten subjects with type 1 
diabetes without endogenous insulin secretion in a single 30-h clinical feasibility study 
controlling subcutaneous delivery of insulin based on plasma glucose (PG) measurements in 15 
min intervals. Meal information, but no priming bolus, was given to the controller at start of each 
of three meals. To improve closed-loop performance of MPC, model kernels were updated with 
growing patient data and prediction errors were compensated with a PID-based offset-controller. 

RESULTS: The overall mean (n=10) PG was 156 mg/dL, with 74% time of PG values in the 
target range of 70–180 mg/dL. With 2 incidents during 240 h of closed-loop control, 
hypoglycemia (PG < 70 mg/dL) was rare. During nighttime control, prior to model adaptation, 
mean PG was elevated (149 mg/dL, with 38% time in target 70–140 mg/dL). However, daytime 
control after kernel adaptation improved significantly (147 mg/dL, with 75% of PG in target with 
adaptation vs. 163 mg/dL, with 63% without). In retrospective analysis of insulin and glucagon 
measurements, significant glucagon surges were observed in the morning after breakfast, 
indicating a role of glucagon in the “dawn effect” in T1DM. 

CONCLUSIONS: MPC of blood glucose for type 1 diabetes patients using a generic integrated 
PBPK/PD model kernel with PID-based offset-control achieved good glycemic control with 
significant improvements upon update of the core prediction model. Once the relevance of 
(postprandial) glucagon in T1DM has been analysed, fully understood and captured by 
PBPK/PD modeling, future trials testing the improved system (in combination with a s.c. CGM 
device) in controlled conditions seem very promising. 

 

I.2 Introduction 

Maintaining blood glucose levels within a normal range is crucial to reduce long-term 
complications in patients with diabetes mellitus (1, 2). Automation of this task would relieve 
patients of the burden of manual control and has been shown to lower risk of hypoglycaemia 
(3), increasing quality of life. 



Improvements in glucose sensing and insulin analogs and their delivery devices have advanced 
the conditions for developing a feasible solution for a fully integrated artificial pancreas (AP) 
system (4, 5). The superiority of automatic glucose control (AGC) by s.c. glucose 
measurements and s.c. insulin infusions (s.c.-s.c. route) over manual control has already been 
demonstrated (6).  

Although various control strategies have been designed for the AP (7-11) (12) physiologic lag 
times remain a core problem in reactive feedback-control solutions (12). Lag-times are best 
handled with feed-forward control solutions, the most widely used approach being model 
predictive control (MPC) (13-16) 

We previously demonstrated in silico the feasibility of safe and effective control using, for the 
first time, a detailed generic whole-body physiology-based pharmacokinetic/pharmacodynamic 
(PBPK/PD) model (17) within a robust MPC algorithm with subcutaneous insulin infusions 
directed by the computer algorithm using sampled venous plasma glucose (PG) in 15-min 
intervals in sedentary subjects over the course of 24 h (18).  

The decision to further use this control approach was based on the evaluation of accuracy and 
predictive reliability of the PBPK/PD modeling approach to describe glucose homeostasis (17).  

Whereas most control approaches (12, 19-22), even semi-physiological MPC approaches using 
the UVa/Padova simulator, (23, 24), and the Cambridge Model (25) only use insulin for closed 
loop glucose control and also only use internal model representations of glucose and insulin 
dynamics in case of MPC, a new approach is bihormonal control of glucoase, including 
glucagon for glcaemic control (16, 26). Although El-Khatib et al. have evaluated the efficacy of 
exogenous glucagon in treating hypoglycaemia (27), the relevance and influence of 
endogenous glucagon in the control of blood glucose in T1DM is diversely discussed (28) (Short 
Literature Review).  

It has been reported that postprandial glucagon surges may occur in individuals with T1DM (29), 
however, no strong evidence for postprandial glucagon was found in previous studies (16, 17, 
26). Even though we did not use exogenous glucagon for control…We did measure blood 
glucagon levels to evaluate relevance of glucagon for glycaemic control within this control study. 

We hypothesized that glycemic control could be achieved in humans with type 1 diabetes using 
these models as kernels for model predictive control concepts in blood glucose control by 
prediction of the undisturbed and sedated glucose core dynamics. In this regard, we have 
developed a novel control approach, which, for the first time, combines a detailed a-priori 
individualizable generic whole-body physiology-based pharmacokinetic/pharmacodynamic 
(PBPK/PD) model (17), with a robust MPC algorithm for automatic glucose control. Based on an 
accurate prediction (PBPK/PD) model of the individual’s core dynamics of blood glucose levels 
(17), refined over time using continuously gathered patient data, the MPC computes an optimal 
feed-forward control input. To increase closed-loop stability and robustness against 
disturbances and model uncertainties outside the predicted core dynamics, a PID-based 
feedback controller is used for compensation of prediction errors (offset). 

Here, we report the results of a study testing this hypothesis in a 24h feasibility study for 
automatic glucose control. The study was designed as a feasibility study to evaluate for the first 
time the in-vivo performance of the algorithm in a sedated scenario including four meal 
challenges. 



I.3 Clinical Trials: Materials and Methods 

After having evaluated the reliability of the developed PBPK/PD models of the GIM (17), and the 
integrated model predictive control approach (18), two mono-centric, open, non-controlled 
feasibility studies in subjects with type 1 diabetes were conducted in successive steps.  

The glucose control algorithm (GCA) developed here has never before been used on patients in 
a clinical trial. The first (iteration) prototypes have been evaluated in-silico before tests were 
conducted in a first clinical feasibility (REACTbyALGO) study in Graz in Jan/Feb 2013 using, for 
safety reasons, accurate glucose measurements from blood. 

In the second iteration, the AGC has been tailored towards blood-glucose control using 
subcutaneous continuous glucose monitoring (CGMs) data for the calculation of insulin dosing, 
which corresponds to the state of the art in (other) AGC systems currently in development (30, 
31). Performance of the control system using CGM data has first been evaluated in-silico to 
assess the required sensor accuracy for save control in a clinical trial. The final system was 
then evaluated within the second clinical trial for AGC in Jan 2014. 

In both trials, each of the 10 subjects participated in a 6h clamp and 24h-manual-closed-loop 
blood glucose control experiment (total 30h). The trials were performed in a controlled setting at 
the Clinical Research Centre (CRC) at Medical University of Graz. The patients were recruited 
from the diabetes outpatient clinic of the centre. The results of the 24h feasibility studies for 
automatic glucose control are presented in the following sections.  

I.3.1 Trials 

I.3.1.1  REACTbyALGO (Trial #1) 

We conducted two mono-centric, open, non-controlled feasibility studies in subjects with type 1 
diabetes, the first in February 2013, the second in January 2014. The study protocol was 
approved by the local ethics committee and performed in accordance with the Declaration of 
Helsinki and the principles of Good Clinical Practice. The study included a total of 10 subjects 
and was performed in a controlled setting at the Clinical Research Centre (CRC) at Medical 
University of Graz. The patients were recruited from the diabetes outpatient clinic of the centre. 

I.3.1.1.1 Subjects 

Signed informed consent was obtained before any trial-related activities. (Trial-related activities 
are any procedure that would not have been performed during standard medical care). Subjects 
were 40.7 ± 12.5 (25-59) years of age and had type 1 diabetes (as defined by WHO) for at least 
24 months with C-peptide levels below detection threshold. Subject’s HbA1c was required to be 
below 10%, and the Body Mass Index (BMI) was 27 ± 3 (24-32) kg/m2, with body weights of 87.5 
± 10.5 (67-101) kg and body heights of 179 ± 6.5 (169-191) cm. All subjects have been treated 
with continuous subcutaneous insulin infusion (CSII) for at least 3 months prior to start of the 
study. Further exclusion and withdrawal criteria, analysis methods as well as intervention and 
stopping rules are listed in Appendix Fehler! Verweisquelle konnte nicht gefunden werden.. 

I.3.1.1.2 Trial Protocol 

The trial protocol was adapted from the protocol of the 2PRCT. Subjects were admitted to the 
clinical research centre at 1:30 p.m. in the afternoon of the study day and underwent the study 
day examination (concomitant illness, vital signs, adverse events) and preparation (insertion of 
cannulas for blood sampling). Patients arrived in fasted state (last meal and above basal insulin 



dose at 10:00 a.m.) and switched basal insulin delivery from their own pump to a constant basal 
insulin infusion rate from the study pump. Throughout the study blood glucose measurements 
were taken every 15 min. During clamp phase (2:00 p.m. until 5:00 p.m.), patients received 
additional i.v. insulin Actrapid (NovoNordisk) or i.v. glucose if required to stabilize patients at a 
glucose level in the range of 100 mg/dl (5.55 mmol/l) < BG < 120 mg/dl (6.67 mmol/l) at 5:00 
p.m. After 5 p.m., the clamp protocol (i.v. insulin and glucose administration) was discontinued. 
Basal insulin (IIP) was continued. From 2:00 p.m. on blood samples for insulin and glucagon 
measurements are taken every 30 min postprandial and once every hour during the night.  

At 6:00 p.m. the patients received standardized first dinner. The prandial insulin need is covered 
by a dose of short acting insulin delivered with the installed insulin pump. The basal insulin 
infusion rate from 1:30 p.m. until 7:30 p.m. and the insulin dose before the first standard dinner 
was derived from the individual insulin need and determined by the investigator. Patients 
received four standardized meals: Dinner (60 g CHO, 18:00 p.m. day 1), breakfast (48 g CHO, 
8:00 p.m. day 2), lunch (60 g CHO, 12:00 p.m. day 2), and again dinner (60 g CHO, 18:00 p.m. 
day 2). From 7:30 p.m. until end of the study day all insulin doses, including the prandial insulin 
doses (breakfast, lunch, second dinner), have been determined by the MPC algorithm 
administered via the insulin infusion pump. At 7:30 p.m. the next day all patients followed their 
normal treatment regimen and came back 3 days later for a follow up visit. 

I.3.1.2  REACTbyALGO2 (Trial #2) 

I.3.1.2.1 Adapted Trial Protocol 

The trial protocol was further adapted from the protocol of the first trial described above. In the 
first trial, initial model identification was based on the clamp data during the first 6h of the trial. 
At this time, insulin was infused i.v., and blood glucose levels were stabilized. The resulting 
smooth dynamics (containing only a reduced amount of information on dynamic model 
behaviour) and missing information on absorption behaviour of s.c. glucose did not suffice for 
good model identification. Thus, for the second trial, subjects were screened one day prior to 
start of the clinical trial, where they also were equipped with a CGM device. They were then 
admitted on the following day to the clinical research centre at the Medical University of Graz 
(MUG) for the clinical trial and received basal insulin from insulin pumps until initiation of closed-
loop control. After start of control, the protocol and all criteria are as in the protocol for the first 
trial. 



 

Figure 1: Trial Protocol overview from the second clinical trial (REACTbyALGO2). The first line is the day prior to the trial, 
when the CGM device was applied to the patient at 10:00. Day 1(starting at 14:00) and day 2 of the trial are represented by the 
middle and lower line, respectively. Data collected by the CGM from 0:00 to 14:00 at the day of the trial was used for model 
optimization (i.e. individualization). 

I.3.2 Outcome Measures 

The specified parameters for the assessment of the effectiveness of the control system were: 
mean BG; Time/Percent of BG values in Target (70 - 180 mg/dl 3h postprandial and 70 - 140 
mg/dl on all other times), time/percent below 70 mg/dl, and above 180 mg/dl, as well as number 
of hypoglycaemic events < 60 mg/dl treated with carbohydrates. Outcomes were calculated for 
the total of 24h of control, and separately for night-time (10:00 p.m. - 8:00 a.m.) and day-time 
(8:00 a.m. – 7:30 p.m.). 

Two experiments from trial#1 were affected by technical failures (Subject 1 and Subject 2) in the 
model core (Subject 2) and associated with control algorithm parameterization (Subject 1). The 
results of Subject 1 were still included in the analysis as the algorithm, once corrected (there 
was a sign error in calculating ∆𝑇𝑉), quickly recovered autonomously after the second failure 
(Subject 1) but could not be brought back online after the first failure (Subject 2). 

Outcome statistics were calculated using MATLAB®. 

I.3.3 Laboratory Analyses 

Blood for insulin and glucagon measurements was drawn into tubes containing EDTA and put 
immediately on ice. Plasma was isolated by centrifugation at 4°C and frozen within 30 min from 
the time of sampling. Insulin and glucagon were measured by immunoassay. 

I.3.4 Control Algorithm 

The robust MPC algorithm runs on a PC where, once every 15 min, the blood glucose data 
(trial#1) and CGM data (trial#2) is entered manually. After processing the data, the algorithm 
suggests an insulin infusion rate. This insulin infusion rate is checked for plausibility by the staff 
and entered manually into the insulin pump. The insulin pump is filled with short-acting insulin 



(Lispro) whose PK/PD parameters are part of the kernel/algorithm. Clinical parameters and 
patients’ clinical history data including age, sex, race, height, weight, BMI, and history of 
diabetes are collected prospectively. 

  



I.4 Control Performance 

The GCA has not been used on patients within a feasibility study before. Thus, within the first 
study glucose control was performed with intravenous glucose measurements for reasons of 
safety.  For the second study, after adaptation of the control algorithm to cope with s.c. 
measurements, CGM data was used to drive the algorithm. Each of the 10 subjects in the two 
trials participated in a 6h clamp and 24h-manual-closed-loop blood glucose control experiment 
(total 30h). The aggregated results of the study are shown in Figure 2 and Table 1.  

I.4.1 Glycaemic Control 

To demonstrate clinical performance of the AGC system, the control performance of the two 
trials was compared to competitor systems (for which data was available). The times in target 
range achieved by the different Algorithms is listed in Table 1. A visual representation of the key 
performance indicators is shown in Figure 2. 

Table 1: Summary statistics of results of all 30-h closed-loop experiments of REACTbyALGO (RbA1 and RbA2) in comparison 
to trial results from studies by El-Khatib-1 et al. (with two visits for each patient, EK-11 and EK-12) (26) and the ADICOL trial 
(comparison of an open-loop CSII standard-of-care protocol and the Cambridge algorithm, results unpublished. Results are 
separated into overall, day-time-, and night-time-control. The left 3 columns correspond to the first visit/protocol/algorithm version 
and the right 3 columns correspond to the second visit/protocol/algorithm version of the respective clinical trial. 

 EK-11 CSII  RbA1 EK-12 Cambridge RbA2 
OVERALL 

t in Target1 70 (54 to 82) 81 (56 to 97) 74 (51 to 93) 61 (50 to 70) 83 (58 to 98) 76 (60 to 93) 

t in Target2 64 (50 to 81) 71 (43 to 97) 50 (32 to 80) 52 (40 to 58) 68 (42 to 92) 66 (52 to 89) 

t below 50 mg/dl 3 (0 to 11) 3 (0 to 20) 0 (0 to 3) 0 (0 to 0) 0 (0 to 2) 3 (0 to 6) 

t below 70 mg/dl 7 (0 to 19) 11 (0 to 44) 1 (0 to 7) 2 (0 to 8) 3 (0 to 13) 9 (0 to 17) 

t above 170 mg/dl 36 (24 to 42) 26 (1 to 65) 61 (19 to 82) 51 (44 to 64) 41 (25 to 65) 32 (18 to 59) 

Mean Glucose 137 117 156 161 138 128 

Mean Glucose stdv 60 36 38 60 38 47 

Mean Glucose Amp 215 (152 to 299) 148 (80 to 232) 157 (93 to 223) 202 (170 to 230) 154 (105 to 227) 194 (158 to 247) 

OVERNIGHT 

t in Target1 91 (70 to 100) 81 (22 to 100) 79 (12 to 100) 95 (85 to 100) 95 (78 to 100) 90 (78 to 100) 

t in Target2 88 (67 to 100) 71 (3 to 100) 38 (0 to 83) 81 (70 to 97) 75 (35 to 100) 78 (56 to 90) 

t below 50 mg/dl 5 (0 to 18) 2 (0 to 8) 1 (0 to 7) 0 (0 to 0) 0 (0 to 3) 1 (0 to 7) 

t below 70 mg/dl 9 (0 to 27) 13 (0 to 49) 2 (0 to 17) 0 (0 to 0) 2 (0 to 16) 9 (0 to 22) 

t above 170 mg/dl 3 (0 to 6) 17 (0 to 100) 61 (0 to 100) 19 (3 to 30) 23 (0 to 65) 14 (0 to 34) 

Mean Glucose 100 110 149 119 124 109 

Mean Glucose stdv 18 17 21 24 21 27 

Mean Glucose Amp 69 (37 to 107) 61 (25 to 168) 74 (49 to 133) 89 (49 to 113) 74 (39 to 151) 113 (61 to 184) 

DAYTIME 

t in Target1 63 (50 to 77) 79 (37 to 100) 69 (50 to 93) 53 (23 to 61) 79 (38 to 98) 67 (54 to 85) 

t in Target2 57 (45 to 70) 71 (37 to 100) 63 (43 to 93) 44 (11 to 57) 68 (28 to 87) 62 (48 to 85) 

t below 50 mg/dl 2 (0 to 7) 4 (0 to 32) 0 (0 to 0) 0 (0 to 0) 0 (0 to 3) 4 (0 to 11) 

t below 70 mg/dl 5 (0 to 9) 11 (0 to 63) 0 (0 to 0) 0 (0 to 0) 2 (0 to 8) 9 (0 to 17) 

t above 170 mg/dl 51 (39 to 59) 32 (2 to 85) 62 (37 to 89) 65 (55 to 91) 53 (33 to 93) 43 (17 to 74) 

Mean Glucose 150 123 163 175 149 140 

Mean Glucose stdv 60 33 41 52 37 53 

Mean Glucose Amp 189 (113 to 238) 132 (80 to 186) 142 (93 to 198) 160 (109 to 186) 135 (98 to 227) 189 (147 to 236) 

As can be seen in Figure 2, the developed algorithm can compete with existing algorithms, 
especially in its second version in RbA2. When comparing the different trials, it has to be noted: 
the El-Khatib, the Cambridge, and the RbA1 trial use i.v. glucose measurements with an 
accuracy of approximately 2% MARE, although the Cambridge algorithm emulates the time-
delay of s.c. measurements by delaying the sensor signal by 15 min. The RbA2 trial uses real 
s.c. measurements by CGM devices (Dexcom G4 Platinum) with an MARE of 10%. The values 
show that improved time-in-target is overall bought with a higher risk for hypoglycemia. When 



looking only at daytime control, in both trials the controller can compete very well with other 
algorithms. It shows similar values for time in target an only slightly higher than average values 
for time in low glucose ranges (< 70 mg/dl), although still less so than the open-loop CSII 
standard-of-care protocol. However, the figure shows that night-time control of the system in 
RbA1 (trial #1) was below average (see also Figure 3). In RbA2 (trial #2), also night-time control 
was very good in terms of time in target. 

 

Figure 2: Graphical representation of the key performance indicators of published control trials (El-Khatib-1 (26); El-
Khatib-2 (16) and unpublished Data (CSII: standard clinical (non-automated) basal-bolus therapy; Cambridge: Hovorka et al. 
(14)) and the REACTION control trials (REACTbyALGO1/2: the two control-trials using the control algorithm developed here). 
Time in Target (left) is defined as Time of measured blood glucose levels within: 70 mg/dl < BG < 140 mg/dl (in fasted state) and 
70 mg/dl < BG < 180 mg/dl (for 3h postprandial). Time below 70 mg/dl (right) is defined as Time of measured blood glucose 
levels BG < 70 mg/dl. Displayed are percentages of measured glucose values in the respective range for overall control 
performance (top axis) and daytime control (bottom axis). 

Even though in trial #1, the controller overall does not achieve the best scores for “Time in 
Target Range”, the glucose trajectories within trial #1 show the least individuals with episodes 
below 70 mg/dl. In general, basal insulin provision was too restrictive (especially during the 
night). Insulin action was overestimated and dose correction did not adapt accordingly. This was 
the case due to a conservative parameterization of the correction module (the FMPD controller) 
and due to issues in initial model identification. Initial model identification was based on the 
clamp data during the first 6h of the trial. At this time, insulin was infused i.v., and blood glucose 
levels were stabilized. The resulting smooth dynamics (containing only a reduced amount of 
information on dynamic model behavior) and missing information on absorption behavior of s.c. 
glucose did not suffice for good model identification. 
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In trial #2, control performance was significantly improved. Due to the change in workflow (i.e. 
trial protocol), initial model identification was significantly improved resulting in good glucose 
control right from the start and a strong improvement of night-time control. Although time in 
target for day-time control was very good, there were a number of incidents of hypoglycaemia 
after lunch/before dinner on day 2, possibly caused by overdosing of insulin during meals due to 
an compensation of the model deviation during meals (predictions often too low) as well as 
during the decrease in insulin sensitivity in the morning followed by an increase in sensitivity in 
the afternoon (“dawn-effect”, see following Section I.4.3) by the FMPD controller. 

Another reason for the suboptimal control during the night, but low amount of hypos in trial #1 
compared to trial #2 were the higher rejection rates for dose recommendations (see Section 
I.4.4). 

 

Figure 3: Mean (±SD) of venous peripheral glucose levels and insulin doses for REACTbyALGO1 (n=10, red trajectories 
and shaded areas) as well as REACTbyALGO2 (n=10, blue trajectories and shaded areas). The mean (SD) of venous 
plasma glucose (PG) levels with 15-min sampling is shown from all (N=10) 30-h experiments in ten subjects for each trial, 
respectively. REACTbyALGO1: During control (t > 330 min) the maximum in mean PG was 225 mg/dL at 10:00 A.M. after the 
first breakfast, and the mean nadir was 105 mg/dL at 4:45 P.M. before dinner on day 2. The overall mean of all 30-h PG results 
(N = 119 measurements per experiment) was 156 mg/dL. The overall mean PG during night-time (10 P.M.–8 A.M.) was 149 
mg/dL (N=66 measurements per experiment). REACTbyALGO2: During control (t > 330 min) the maximum in mean PG was 
205 mg/dL at 7:15 P.M. after the second lunch, and the mean nadir was 85 mg/dL at 12:00 P.M. before lunch on day 2. The 
overall mean of all 30-h PG results (N = 119 measurements per experiment) was 127 mg/dL. The overall mean PG during night-
time (10 P.M.–8 A.M.) was 110 mg/dL (N = 66 measurements per experiment). The four meals are indicated by the black bar at 
the bottom of the plot. The mean of subcutaneous insulin infusion rates administered by the controller are plotted at lower end of 
plot (right axis). 

I.4.2 Insulin PK/PD 

We have collected blood samples of insulin to evaluate if the insulin PK properties could be 
identified from glucose measurements. Dynamic properties of insulin were estimated from 
glucose response dynamics during the clamp phase and then refined during the trial by model 

adaptation. Parameters for insulin sensitivity (𝑆𝐼), renal clearance (𝐺𝐹𝑅𝑓𝑟𝑎𝑐
𝐼 ), subcutaneous 



degradation (𝑘𝑆𝐶𝐷
𝐼 ), and subcutaneous unspecified binding (𝑄𝑓𝑎𝑐) were identified. No a-priori 

assumptions on insulin PK parameters were used as compared to other algorithms (26).  

In the first trial, for four out of ten subjects (Subjects 01, 03, 04 and 05), insulin PK properties 
were correctly identified from glucose clamp data before start of control (For all individual plots, 
see Appendix Fehler! Verweisquelle konnte nicht gefunden werden.). For all others, insulin 
half-life was overestimated, except for Subject 09, where it was underestimated. For Subjects 
08-10, the qualitative prediction of insulin PK was significantly improved through model 
adaptation during control. 

In the second trial, insulin PK was correctly estimated in 7 out of 10 subjects. For the remaining 
3 (Subjects 7-9), the qualitative fit, with respect to t1/2, was still good. This means that insulin 
PK can be identified from subcutaneous glucose measurements in most cases and at least 
qualitatively (quantitative mismatch compensated for by insulin sensitivity 𝑆𝐼) in all cases. 

I.4.3 Endogenous Glucagon PK/PD 

We have collected blood samples of glucagon to gain insight in possible dysregulation of 
glucagon plasma levels and to evaluate the influence of glucagon in glucose control in T1DM 
within a post-hoc evaluation. 

The model used during the trial only assumed plasma glucose regulated endogenous secretion 
of glucagon resulting in basal glucagon levels throughout, with small variations during high and 
low glucose. 

The retrieved glucagon measurements revealed, however, that for many patients, significant 
postprandial surges of glucagon levels were observed (Figure 4, and Appendix Fehler! 
Verweisquelle konnte nicht gefunden werden. for all individual profiles). In some patients, 
Subjects 3 and 4 for trial #1 (early morning until midday on the second day, see Figure 4 for 
Subject 03 and also Figure 5 for Subject 03 and Subject 04 from trial #1) and Subjects 1, 2, 5-9 
for trial #2, glucose values remained significantly above predicted levels. This could be 
associated to the observed glucagon surges for all subjects except Subjects 5, 6 and 9 from trial 
#2, for which glucagon levels did not significantly increase. 

It has been reported in literature that mixed meals may cause glucagon surges in individuals 
with T1DM (28, 32). This may be caused by meal composition and especially the protein 
content of these meals. In T1DM, influence of glucose levels on glucagon secretion subside 
over time probably due to a deficiency in amylin-mediated intra-islet signalling necessary for 
glucose sensing (33). Thus, the glucose absorbed from a meal does no longer supress 
glucagon secretion. 



 

Figure 4: Glucose control experiment in Subject 03. During morning hours and early afternoon (8:00 a.m. (t = 1100 min) until 
2:00 p.m. (t = 1100 min)) a systematic error of glucose predictions (underprediction) can be observed. At the same time, a 
distinct elevation of glucagon (postprandial glucagon surge) has been observed. 

The original version of the model as it was used in the control trial was adapted to account for 
an alternative mode of action for glucagon on liver glucose homeostasis to better describe the 
observed glucagon dynamics (Figure 5). Incretin-dependent prandial glucagon secretion is 
modelled dependent on oral meal (glucose) absorption. In addition, a function for glucagon-

dependent suppression of hepatic glucose uptake 𝑀𝑁𝐻𝐺𝑈 ,) is included which was not accounted 
for before but as previously hypothesized (17) could be necessary to strengthen the effect of 
glucagon. Two refitted simulations on Subjects 03 and 04 (From trial#1, Figure 5) are 
compared, once without and once with the new glucagon mechanistics to illustrate the 
evaluation and effect of the tested mode of action. 
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Figure 5: Post-hoc simulation: dynamics of Subject 03 and Subject 04 with the new mechanistics for prandial glucagon 

secretion and glucagon-dependent suppression of glucose uptake (𝑴𝑵𝑯𝑮𝑼). 

Although the postprandial glucagon surges are now better captured, the deviations in the 
morning of the second day (t = 1150 to t = 1400) remain. In return, glucose levels after dinner 
on day one are now overestimated, as are the underlying glucagon levels. 

In the second trial, deviations of model predictions in the morning (possibly “dawn-effect”) were 
even more prominent, but accompanied by smaller glucagon surges. But as this effect was not 
associated with glucagon surges in Subjects 5, 6 and 9, and the adapted model, as shown in in 
Figure 5, could also not fully connect this effect to glucagon, a different explanation was sought. 
Thorough retrospective analysis of trial documentation of the second trial revealed that these 
deviations were always accompanied by consumption of coffee with breakfast. And caffeine has 
been associated with acute insulin resistance (34). However, morning coffee consumption was 
not documented consistently throughout the trial (only Subjects 1, 6, 8 & 9), limiting the impact 
of this observation. 

I.4.4 Adherence to Dose Recommendations 

Adherence to dose recommendations by the medical staff during the trial was an issue. For the 
trial, medical doctors were present to confirm the dose recommendations given by the 
algorithm. Although the trial protocol provided rigorous rules for the adherence to dose 
recommendations within a given value range for blood glucose measurements, final decision on 
the given dose could still be decided on by the physician. In many cases dose 
recommendations were rejected although individuals were not outside (below 110 mg/dl) the 
specified range for glucose measurements, but rather within a range for which the 
recommended dose could have been feasible. An example is Subject 05 (Figure 6). Even 
though glucose values remain above 140 mg/dl after dinner on the first day (time > 400 min), 
dose recommendations were not accepted. After a further increase to 180 mg/dl (time = 800 
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min), a single dose recommendation was accepted but subsequent suggestions were again 
rejected even though glucose levels did not fall below 140 mg/dl. 

This circumstance significantly reduces the impact of the aggregated statistics on the feasibility 
study (RbA1 in Table 1 and Figure 2). Rejection of dose recommendations in general leads to 
increased glucose levels and avoids low blood glucose levels. This means, that statistics of 
RbA1 are biased towards a higher glucose level and a lower risk for hypoglycaemia. This has to 
be taken into account when interpreting the results. 

In the second trial, physicians were instructed to be more rigorous in adherence to the protocol. 
Thus, almost all, except for 3 time-periods in Subjects 1, 4 and 10, dose recommendations were 
adhered to. This allows interpretation of the trial results with respect to performance of the 
control algorithm. 

 

Figure 6: Glucose control experiment in Subject 05. MPC dose recommendations were rejected from the start of control (7:30 
p.m., t = 330 min) until 7:00 a.m. (t = 1020 min). Following that, dose recommendations were accepted and control results were 
good. Two more dose rejection at 11:00 a.m. (t = 1260 min, recommendation of 0 units was raised to 2 units of insulin, 
unnecessarily as glucose levels were already falling steeply) and 6:15 p.m. (t = 1695 min, 1.2 U recommended, 0 U applied, 
medical staff was taking no risks for overdose as this was shortly before end of trial). 

I.4.5 Hypoglycaemia 

In the first trial, there were two incidents of hypoglycemia (Glucose < 60 mg/dl, Subject 01 and 
Subject 02), and both were caused by technical issues. 
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In the second trial, there were 9 hypoglycaemia incidents caused by the algorithm, most of 
which occurred before dinner in between 3-5 p.m. (Subjects 2, 4-7 and 10). All of them were 
related to unpredicted mid-day increase in insulin sensitivity. For some (Subjects 2, 4, and 10) 
hypoglycaemia incidents occurred at the end of the first day (between 10 p.m. and midnight) 
due to sub-optimal model fits. A reason for the low number of hypoglycaemic incidents in the 
first trial is the fact that physicians more often rejected dose recommendations. In the second 
trial, almost all, except for 3 time-periods in Subjects 1, 4 and 10, dose recommendations were 
adhered to. 

I.4.6 Summary 

When comparing the different trials and considering the fact that the RbA2 trial uses real s.c. 
measurements by CGM devices (Dexcom G4 Platinum) with an MARE of 10%, ultimately the 
controller can compete with current state-of-the-art algorithms and is superior to standard-of-
care open-loop control.  

The fact that insulin PK was correctly estimated in 7 out of 10 subjects and 10 out of 10 
qualitatively shows, that the established workflow for the PBPK/PD model individualization is a 
feasible approach. In addition, the PBPK/PD approach also helps to reveal yet unexplained 
phenomena within the system and allows systematic post-hoc analysis thereof (mode-of-action 
analysis of “dawn-effect”). 

An issue was adherence to dose recommendations, limiting the impact of the aggregated 
statistics on the first feasibility study (RbA1) and the outcomes are biased towards a higher 
glucose level and a lower risk for hypoglycaemia. This has to be taken into account when 
interpreting the results. This could be avoided for the second trial. 

Overall, it can be said, that a tighter control of blood glucose levels (improved time-in-target)  is 
bought with a higher risk for hypoglycaemia, even more so, if glucose measurements become 
less accurate and this fact poses the greatest hurdle (safety of control) for commercialization of 
ACG devices.  

  



I.5 Clinical Trial 

The new control approach is evaluated within two clinical feasibility studies. In the first study, as 
prior information, the controller only requires the individual’s physiologic properties (height, 
weight, gender and age) and the basal rate of the insulin infusion pump prior to trial start. In the 
second trial, CGM data, collected 24h prior to start of the trial was required for initial model 
identification, i.e. model individualization. The approach combines a predictive system (MPC) 
with a reactive system (FMPD), increasing the controller’s robustness vs. uncertainty. The 
controller directly calculates all insulin inputs and does not require (partial) meal-priming boluses 
of insulin. In the first trial, the controller shows acceptable control performance. Although the 
latest state-of-the-art systems are developed for s.c. glucose measurements this controller has 
in a first step been evaluated in a clinical setting with plasma glucose measurements for safety 
reasons. In the second trial, after thorough in-silico testing, the controller was applied in a 
control setting using s.c. glucose measurements and achieved very good control performance. 

Although the controller has achieved satisfactory results in trial #1, workflow adjustments were 
required for the second trial. As the controller needs an initial estimate of the individualized 
model (18) at start of control, clamp data was used  for initial model individualization. This step 
was required as online model adaptation within the algorithm is computationally demanding and 
does not deliver the required estimates in time by start of control. But data collected during the 
clamp phase has a high degree of uncertainty due to an unknown initial state. It was assumed 
that subjects arrived in a well-controlled steady state as they arrived at the clinic in a fasted 
state, with only the basal rate of their insulin pumps running. However, many subjects arrived in 
an uncontrolled state with extreme hypo/hyperglycaemia, possibly caused by distress from 
travelling or from anticipation of the enrolment process (preparation of catheters for clamps and 
sensor micro-dialysis access catheters), introducing a significant amount of 
disturbance/uncertainty. Partly, patients then either omitted or reduced basal insulin to correct 
glucose levels at time of enrolment and required either oral or i.v. glucose or insulin 
interventions. Also, the use of different insulin during clamp (Aspart, in contrast to the s.c. pump 
insulin Lispro) could have influenced model identification as insulin properties (PK and PD) of 
insulin Lispro and insulin Aspart were assumed as being identical, which may not be the case. 
In addition, conditions for model identification were suboptimal as i.v. clamping does not deliver 
information on absorption properties of subcutaneous insulin and the s.c. insulin infusion rate 
was kept constant except for the meal bolus right before start of control. Further, patients 
arrived in fasted state, omitting lunch. The fasted state itself may be a condition not well 
described by the model with processes of cellular glucose metabolism (glycogen storage and 
glucose production) affecting glucose homeostasis. All these criteria make initial model 
optimization challenging and resulted in below optimal performance of the controller.  

Thus, for the second trial, an extension of the observation phase with additional time-data on 
the effect of s.c. insulin was decided to handle these uncertainties. This new workflow approach 
was successful, as the controller performance improved significantly. Although this algorithm 
now requires an initial model fit from a priori glucose measurements, the adapted workflow 
shows that this approach, by a-priori data collection or a 24h run-in phase for the algorithm, is 
feasible. Taking into account that long-term core dynamics (17) are stable, and the model can 
subsequently be adapted for long-term shifts (change in life-style etc.) as long as intra-day 
variability is structurally captured (glucagon dynamics) or informed (e.g. better meal 
characterization). 

An unresolved issue in this regard is the observed deviations in model predictions on the 
morning of the second day (“dawn-effect”), possibly associated with meal/nutrition-dependent 
postprandial glucagon secretion. In most control studies, the dynamics and influence of 



glucagon is omitted completely (14, 35). And in glucose control studies which explicitly use 
exogenous glucagon for glycemic control, these postprandial surges are not discussed as they 
are not observed in the studied T1DM individuals (16, 17, 26). And in trial #1 the associated 
model deviations are only observed in the morning, and only in the presence of glucagon 
surges, but this was not the case for Subjects 05, 06 and 09 from trial #2, where these 
deviations occurred even though no significant glucagon surges were observed. The observed 
peak postprandial excursion of endogenous glucagon are comparable to peak concentration 
levels reached in bi-hormonal control of T1DM (26) for effective treatment of hypoglycemia (27, 
36). However, if at all, only in Subjects 03, 04, and 06 (trial #1) and Subjects 01, 02, 07 and 09 
(trial #2), the rising glucagon may have caused these deviations, but had not effect on glucose 
levels in Subject 09 (trial #1) or Subject 10 (trial #2). The fact that a morning rise in glucose has 
been observed without a simultaneous rise in glucagon and, on the other hand, a rise in 
glucagon did not cause a simultaneous rise in glucose, indicates other processes involved.  
In T2DM, it is a well-established rule to calculate a relatively higher dose for breakfast than for 
later meals (37) to counteract this “dawn-effect”. But also in T2DM (38, 39) (and the elderly (40)) 
this does not seem to be associated with increased glucagon levels. Also, in healthy, young 
individuals, the “dawn-effect”, is absent, and even an inverse behavior, with increased morning 
glucose tolerance (37, 41), is observed, possibly by circadian insulin receptor modulation (40). 
In trials #1 and #2 conducted here (in T1DM), the effect seems only meal associated and unlike 
in T2DM (39) does not occur before onset of Breakfast. This effect could thus be a combinatory 
effect which occurs due to diurnal variations in regulatory hormones such as cortisol, which are 
known to effect glucose homeostasis and are elevated in the morning (42) and a defective 
regulation of postprandial intra-islet signaling, e.g. suppression of glucagon secretion by amylin 
(33) or glucose (29, 43-45) as well as nutrition.  

As analyzed here, it is now questionable, if the rise in glucagon or change in metabolism is the 
main cause for the observed model deviations, as, on the one hand this effect is not observed in 
all patients, and not during the evening meals and on the other hand does not occur before start 
of a meal. Rather, nutritional effects, e.g. coffee (34) as the data from trial #2 indicates, are 
likely to be the cause for these episodes of insulin resistance.  

In the second trial, a slight increase in the number of hypoglycaemic events was observed, 
especially after lunch. Data indicates that the midday increase in insulin sensitivity following the 
morning episode of reduced insulin sensitivity accompanied by uncertainty in meal absorption 
leading to a slight insulin overdose are most likely the cause for this. Nevertheless, the model 
developed here does not use time-variant parameters but rather builds on a mechanistic 
description of the systemic properties underlying these variations over time. In this regard, in 
combination with additional experimental studies, the “dawn-effect” in T1DM will have to be 
further analyzed for a better understanding of the relevant processes and effectors underlying 
this effect. 

  



I.6 Conclusion 

A blood glucose control system has been evaluated that combines a highly predictive whole-
body physiology-based pharmacokinetic/pharmacodynamic (PBPK/PD) model (17) within a 
model predictive control framework and a reactive dose-correction module reacting to 
unpredictable individual patient behaviour.  

As personalized control of blood glucose requires an understanding of the mechanistic 
properties within an individual subject with T1DM and PBPK/PD models deliver the ideal 
framework for such ambitious integration of knowledge and information. With all the remaining 
issues considered, the GIM model presented here shows reliable predictive capabilities, also on 
a long time frame, once it has been parameterized for the respective individual. The model was 
developed in such a way that its purpose of use is versatile. The generic modeling concept 
provides a rigorous framework for individualization (even across organisms), data integration, 
and model extension for (given the good model predictivity) e.g. mode-of-action analysis. It 
could thus also be used for 1) fundamental research to uncover physiological properties and the 
relevance of cellular processes in whole-body physiology, as well as 2) fundamental research 
on diabetes related drug targets and corresponding pharmaceutical intervention strategies. Last 
but not least, the model can be used, as it is here, for the 2) prediction and automatic control of 
blood glucose in T1DM.  

And although the automatic control system has been developed for use in a controlled clinical 
environment and evaluated w.r.t. model uncertainty and carbohydrate disturbances, it would be 
of interest how the system would cope with sickness, medication, and stress i.e. in an intensive-
care setting, or physical exercise. Although, in-silico evaluation and results from the feasibility 
study indicate that the controller can handle significant disturbances. The question for the future 
here is, how predictive should such a system be if it does not account for all external or internal 
disturbances to the patient.  

Whereas the PBPK/PD model-based MPC approach is a feasible approach to AGC, the 
modeling framework can also help to better understand the inner working in the body’s control 
of glucose homeostasis. Whereas existing models are built for - and continuously adapted to - 
an operating point, the model developed here captures glucose core dynamics in a time-
invariant and global manner. Nevertheless, a better understanding of individual counter-
regulatory mechanisms in extreme situations, e.g. the effect of prolonged hyperglycaemia 
(glucose toxicity (46)) in Subject 10 (trial #1), or hypoinsulinaemia after insulin under-dosing in 
Subjects 04, 06, 08, and 10 (trial #1), is required to increase efficiency (robustness and 
tightness) of glycemic control.  

This work demonstrated, that the predictive control approach using PBPK/PD models is well 
suited for automated glucose control, especially to handle the long dead-time in effect of 
subcutaneous insulin. The trade-off for highly predictive systems is the computational power 
they require within a model predictive control setting and the reduced flexibility in case of short-
term changes in patient behaviour. Nevertheless, the control approach showed comparable 
performance to competing approaches with overall promising results and significant 
improvement after workflow adaptation and improved online model identification.  

This work brings a new approach to the AGC (or AP) community by introducing PBPK/PD 
models as computational kernels for the MPC algorithm. Ultimately, performance of the different 
systems, be it in terms of predictivity or control performance, which have been developed to 
date, will only be possible in a head-to-head comparison within the same clinical setting. The 
PBPK/PD approach has been developed with a perspective towards the increase in data 
availability on multiple scales and to gain a better understanding of the physiologic processes 



involved in the regulation of whole-body glucose homeostasis, as e.g. the role of glucagon 
during the “dawn-effect”. Until this system can be brought to market it will require additional 
validation in a wider variation of real-life scenarios and stronger system integration, i.e. 
miniaturization. Similarly as for an in-silico analysis of predictivity of different model types, 
comparison of AGC algorithm performances from different trials is problematic and statistically 
questionable due to the low number of participants, and is only feasible within the same clinical 
field trial on a large number of individuals. Common practice is a general statistical analysis as 
done in Section I.4.1 giving a rough estimate of controller performance (30, 47). However it has 
to be noticed, that boundary conditions during clinical trials may have a strong influence on 
outcome measures, amongst others: the selected individuals (strong inter-individual variability, 
requiring a large number of subjects to achieve statistical relevant outcome measures) and trial 
protocol (especially initial conditions, nutrition and allowed physical activity). This should be 
considered when comparing different algorithms. Another difficulty for offline-AGC comparison 
are the additional support or add-on systems like post-sensor signal processing (48) which are 
not fully disseminated in the public domain. 

Even within AP@Home (49), a EU research funded project currently in progress, where two 
different MPC AGC algorithms (50, 51) are further developed and evaluated, no head to head 
comparison was conducted within a single field trial. Judging from published trial summaries, a 
time-in-target value (70-180 mg/dl, corresponding to “target1” in Table 1, of 60 % and time in 
and hypoglycaemia (< 70 mg/dl) < 5 % is currently the benchmark in AGC; Values which were 
almost also reached within RbA2 (trial #2) here. 

To this state, using predictions of the core dynamics of an individual’s blood glucose levels 
within the proposed control approach has proven feasible proving that once an individual’s 
physiologic properties have been captured with the right model parameterization, safe and good 
control of blood glucose levels is possible. 

 


