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gDepartment of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; hDepartment of Pharmacology and Pharmacy, the 
University of Hong Kong, Hong Kong, S. A. R. China

ABSTRACT
Oral antibiotics are commonly prescribed to non-hospitalized adults. However, antibiotic-induced 
changes in the human gut microbiome are often investigated in cohorts with preexisting health 
conditions and/or concomitant medication, leaving the effects of antibiotics not completely under
stood. We used a combination of omic approaches to comprehensively assess the effects of 
antibiotics on the gut microbiota and particularly the gut resistome of a small cohort of healthy 
adults. We observed that 3 to 19 species per individual proliferated during antibiotic treatment and 
Gram-negative species expanded significantly in relative abundance. While the overall relative 
abundance of antibiotic resistance gene homologs did not significantly change, antibiotic- 
specific gene homologs with presumed resistance toward the administered antibiotics were 
common in proliferating species and significantly increased in relative abundance. Virome sequen
cing and plasmid analysis showed an expansion of antibiotic-specific resistance gene homologs 
even 3 months after antibiotic administration, while paired-end read analysis suggested their 
dissemination among different species. These results suggest that antibiotic treatment can lead 
to a persistent expansion of antibiotic resistance genes in the human gut microbiota and provide 
further data in support of good antibiotic stewardship.

Abbreviation: ARG – Antibiotic resistance gene homolog; AsRG – Antibiotic-specific resistance 
gene homolog; AZY – Azithromycin; CFX – Cefuroxime; CIP – Ciprofloxacin; DOX – Doxycycline; FDR 
– False discovery rate; GRiD – Growth rate index value; HGT – Horizontal gene transfer; NMDS – Non- 
metric multidimensional scaling; qPCR – Quantitative polymerase chain reaction; RPM – Reads per 
million mapped reads; TA – Transcriptional activity; TE – Transposable element; TPM – Transcripts 
per million mapped reads
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Introduction
The gut microbiota is a complex collection of bac
teria, archaea, eukaryotic cells, and viruses. Humans 
and their gut microbiota maintain a dynamic equili
brium that is important for metabolic homeostasis, 
immune regulation, and pathogen susceptibility. 
Human host-microbiota symbiosis is affected by fac
tors such as genetic background, diet, and drug 
treatment.1 In particular, antibiotic therapy can 

perturb the gut microbiota composition and poten
tially interfere with the optimal functioning of the 
gut microbiome in an individualized and time- 
dependent manner.2,3 Antibiotic treatment is asso
ciated with reduced microbiome diversity4–6 and 
development of infection with bacteria such as 
Clostridium difficile.7,8 Yet, approximately one-third 
of adults in the European Union received at least one 
course of oral antibiotics in 2015.9 Thus, antibiotic 
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stress on the gut microbiome is common; however, 
its effects on the healthy human gut are still not 
completely understood.

Many studies that assessed the impact of anti
biotics on gut bacterial communities were based on 
16S rRNA gene amplicon sequencing.6,7 While 
such an assessment identifies the species composi
tion, it cannot elucidate bacterial functions in the 
communities or determine changes in the reper
toire of antibiotic resistance genes (ARGs).6 Even 
when the full functional potential of the commu
nity is evaluated with shotgun metagenomics, this 
assessment can be biased since DNA from bacteria 
killed by antibiotic treatment is still detected.10 

Maurice et al. investigated the effect of xenobiotics 
on the active human gut microbiome in vitro by 
direct application of drugs to human stool samples. 
They reported that one-third of the gut microbiota 
was damaged cells.2 While this study moved 
beyond a survey of diversity to understand meta
bolic activities, the in vitro design did not account 
for the pharmacokinetic and pharmacodynamic 
properties of an antibiotic in the human body. 
A recent study reported that the gut microbiota is 
resilient to a short-term intervention of broad- 
spectrum antibiotics, with no clear temporal pat
tern in the overall relative abundance of ARGs.3 

Because the study used an antibiotic cocktail, the 
antibiotic-specific responses of the gut microbiota 
and the long-lasting imprint on the resistome (the 
collection of ARGs in a microbiome) could not be 
determined and traced with high resolution. 
Combined metagenomics and metatrancriptomics 
analysis have been employed to investigate the 
effects of antibiotics on transcriptional activities of 
gut microbial communities of hospitalized 
individuals.11 However, in these studies, antibiotic 
effects on the gut might be confounded by factors 
such as hospital stay, preexisting health conditions, 
and/or concomitant medication.

The healthy human gut microbiome harbors 
diverse antibiotic resistance mechanisms.12 These 
include enzymes involved in drug inactivation or 
modification, efflux systems, or polymorphisms in 
antibiotic gene targets. Of concern is that antibiotic 
stress affects not only targeted species but the over
all composition of microbial communities, leading 
to the accumulation of antibiotic resistance traits. 
For example, the macrolide resistance gene ermB, 

amplified by antibiotic treatment, was stable in gut 
bacterial population years after treatment.13 This 
result indicated that a resistance fraction in the 
population can be selected and amplified during 
and after treatment.13 Antibiotic stress can result 
in sensitive bacteria evolving resistance mechan
isms by selecting for gene variants that confer 
higher resistance.14,15

Importantly, ARGs can also be transferred within and 
between species,16 particularly in complex microbial 
communities such as the gut.17,18 Horizontal gene trans
fer mediated by plasmids played a prominent role in the 
spread of antibiotic resistance within the same species or 
between different species.19 Furthermore, the human gut 
is colonized by diverse bacteria, the genomes of which 
can contain up to 20% of prophage DNA.20,21 Such 
phages can incorporate part of their host’s genetic mate
rial, including antibiotic resistance genes during general
ized transduction, and could thus contribute to the rapid 
dissemination of resistance among bacteria. 
A metagenomic study on antibiotic alteration in mice 
showed enrichment in antibiotic resistance genes in the 
virome fraction 2 months after treatment.22 However, 
a subsequent study indicated that the phage-harbored 
reservoir of antibiotic resistance genes might have been 
overestimated due to loosening threshold levels used in 
silico detection of antibiotic resistance genes.23 Thus, the 
importance of phages as reservoirs of antibiotic resis
tance genes remains debated.

In this study, we investigated the effect of antibiotics 
on the composition and resilience of the healthy human 
gut microbiome. We combined metagenome, metatran
scriptome, and virome sequencing for a comprehensive 
assessment of the living, active microbiota, and its asso
ciated phages and plasmids.

Results

Microbial community structure shifted during 
antibiotic treatment and recovered after treatment

To evaluate the effect of antibiotic treatment on the 
human gut microbiome, 10 healthy human volun
teers were recruited and randomized to receive one 
in four different antibiotic courses or to be a control 
(Study design, Methods). Before, during, and after 
exposure to antibiotics, they provided a total of six 
stool samples (Figure S1). Four antibiotics were 
selected based on their clinical relevance and 
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broad-spectrum activity against Gram-positive 
and/or Gram-negative organisms (Table S1). We 
evaluated the impact of antibiotic therapy on the 
microbiome using metagenomic, metatranscrip
tomic and viromic profiling of stool samples 
(Data S1).

In the majority of samples, Bacteroides and 
Firmicutes were dominant at the phylum level 
(Figure S2a). In general, the richness and alpha- 
diversity measured as Shannon index dropped sig
nificantly when compared with the baseline levels 
(Wilcoxon signed-rank test, p = .03 and 0.007) 

(Figure 1a-e), and the inter-individual community 
dissimilarity increased (measured as pairwise Bray– 
Curtis distance, Wilcoxon signed-rank test, p 
= 1 × 10−10), regardless of administering the same 
antibiotic or two different ones (Figure 1f). 
Community diversity was recovered to baseline 
levels after ciprofloxacin (CIP)and cefuroxime 
(CFX) treatments (post-treatment vs. baseline, two- 
tailed paired t-test, FDR = 0.19 and 1.00) in line 
with previous studies.3,6,24 However, doxycycline 
(DOX) and azithromycin (AZY) post-treatment 
communities continued to have relatively low 

Figure 1. Microbial community diversity and dissimilarity. a-e. Alpha-diversity (Shannon index) perturbation during and after different 
antibiotic treatments (a-d) and in the control group (e). f. Pairwise Bray–Curtis distances between two individuals given the same 
treatment or two different treatments. The split violin plots demonstrate the distribution of the distances, with the 25%, 50%, and 75% 
quantiles marked with white ticks. The line graphs represent the mean values. In panels a-f, the red background indicates the antibiotic 
administration period. g-h. Community structures for the microbiomes of participants receiving different antibiotic treatments and 
control samples (T1 to T6). Non-metric multidimensional scaling (NMDS) was applied to Bray–Curtis distances (2D NMDS stress: 0.18). 
The samples were colored with different information: antibiotic groups (g) or treatment periods (h). The ellipses depict a confidence 
level of 90% for the samples with the same color. Antibiotic treatment shifted the community structure detectably during treatment, 
followed by a fast recovery in the post-treatment period.
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diversity (post-treatment vs. baseline, Wilcoxon 
signed-rank test, p = .03 and 0.03), especially for 
azithromycin (Shannon index reduction after 
3 months: 20.2% for AZY-a and 28.2% for AZY- 
b). In a comparison of antibiotics, baseline species- 
level composition did not show significant differ
ences (Adonis test, p = .41), but community com
position during and after treatment differed 
significantly (Adonis test, p = .01) (Figure 1g-h). 
In spite of the small sample size, this result indi
cated that the alterations in community structures 
were specific to a given antibiotic and the post- 
treatment recovery of the community structure 
may also be influenced by the antibiotic type.

The long-term consequences of antibiotic treat
ment were captured at the species level 3 months 
after treatment. For the antibiotic-treated groups, 0 
to 21 species (median: 3.5) with a relative abundance 
of 0 to 47.7% (median: 3.58%) at baseline were 
undetectable after treatment and did not recover 3 
months after antibiotic treatment (Figure 2a and 
Table S2). Except for AZY-b (baseline richness: 65, 
lower than all other baseline samples with a richness 
of 86 to 116), regardless of treatment or control, few 
new species (0 to 1) emerged during or after treat
ment, with maximum relative abundances of 0.88% 
during treatment (CFX-b) and 7.7% in post- 
treatment (CIP-b) (Figure 2a).

Figure 2. The relative abundances of different species categories in different antibiotic treatment periods. a-b. Mean relative 
abundance of species categories for eight individuals treated with antibiotics (a) and two control individuals (b). c. The relative 
abundance of Gram-positive and Gram-negative species. d. The relative abundance of species harboring antibiotic-specific resistance 
gene homologs (AsRGs). In panels a-d, the red background indicates the antibiotic administration period. In panels c-d, the split violin 
plots demonstrate the distribution of relative abundances, with the 25%, 50%, and 75% quantiles marked with white ticks. The line 
graphs represent the mean values. e-f. The relative abundance of Gram-positive and Gram-negative species in proliferating species (e) 
and species harboring AsRGs (f) during treatment.
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To study species with strong competitive advan
tages during treatment, we focused on the species 
that proliferated during T2 and T3 (“proliferating 
species”) (Figure 2a-b, S2b, and Table S2), defined 
as 1) a less abundant species in baseline (relative 
abundance < 0.1%) reached 5% in relative abun
dance in T2 or T3, or 2) an abundant species in 
baseline (relative abundance ≥ 0.1%) increased by 
at least 10-fold relative abundance in T2 or T3. For 
each individual (including controls), 1 to 6 species 
(median: 4) were identified as proliferating species 
(Table S2). Among proliferating species, 
Bacteroides caccae was the most common one, 
shared by three individuals (Figure S2b and Table 
S2). Noticeably, the proliferating species had sig
nificantly predicted higher growth rates25 regard
less of the treatment period (growth rate index 
value (GRiD) median: 1.2), compared with non- 
proliferating species (GRiD median: 1.0, Wilcoxon 
rank-sum test, p = 2 × 10−10) (Figure S3).

Gram-negative species and carriers ofantibiotic- 
specific resistance gene homologs (AsRGs) 
proliferated during treatment

To further assess the competitive advantages of 
gut bacteria during antibiotic treatment, we clas
sified all species as Gram-positive or Gram- 
negative.26 The relative abundance of Gram- 
negative species significantly increased from 
40.5% at baseline to 53.0% during treatment 
(Wilcoxon signed-rank test, p = .02) (Figure 
2c). Gram-negative species also had a higher 
probability of becoming a proliferating species. 
Of the 254 Gram-negative species, 12 species 
proliferated, with a relative abundance of 19.4% 
during treatment. In comparison, of the 554 
Gram-positive species, only 12 species prolifer
ated with an abundance of 9.1% (chi-square test, 
p = .043) (Figure 2e).

To study species-specific resistance profiles, 
we compiled a list of antibiotic-specific resistance 
gene homologs (AsRG) that can confer or con
tribute to clinically relevant resistance to anti
biotics given to the study participants (Table S3) 
and assigned AsRGs to specific host species (see 
Methods). For each individual, 0 to 8 species 
(median: 2.5) were identified as AsRG carriers 
via a contig-species assignment procedure 

(species names aligned with the taxonomic pro
files to get regarding relative abundances, see 
Methods and Data S2 for details). Similar to 
the proliferating species, more Gram-negative 
species were identified as AsRG carriers (15/254 
Gram-negative species with a relative abundance 
of 14.8% during treatment vs. 11/554 Gram- 
positive species with an abundance of 1.2%, chi- 
square test, p = .007) (Figure 2f). Noticeably, 
AsRG carriers had a higher tendency to prolif
erate than the species harboring no identified 
AsRGs (6/30 vs. 14/1140, unclassified species 
and proliferating phage excluded, Fisher test, 
p = 5 × 10−6). In general, AsRGs tended to 
have high copy numbers (Figure S4a) and mul
tiple host species (Figure S4b) in the metage
nomic assemblies. The relative abundance of 
AsRG carriers also increased from 3.0% to 
21.1% during antibiotic treatment (Wilcoxon 
signed-rank test, p = .03) (Figure 2d) indicating 
that AsRGs confer a fitness advantage during 
antibiotic treatment.

AsRGs have high transcriptional activity during 
antibiotic treatment

To determine if antibiotic treatment exerts selec
tive pressure on the resistome as a whole, we 
analyzed the changes in ARGs for each antibiotic 
used in the study. Detected resistance genes did 
not show an overall increase in DNA relative 
abundance or transcriptional activity. However, 
specific trends in AsRGs were observed (Figure 
S5). As the most prevalent gene family that 
could also be detected in the individuals not 
treated with tetracycline, ARGs conferring resis
tance to tetracycline antibiotics showed 
increased DNA relative abundance and high 
expression during doxycycline (DOX) treatment 
(Figure 3a-b). The induction of tetracycline 
resistance genes by doxycycline has been 
observed before and is in fact utilized for fine- 
tuning the expression of specific genes in eukar
yotic cells.27 In contrast, no clear patterns in 
DNA abundance or transcriptional activity were 
observed during treatment with other antibiotics 
(Figure 3c-d). The DNA relative abundance of 
AsRGs significantly increased during treatment 
compared to non-AsRGs (median fold-change: 
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2.4 vs. 0.9, Wilcoxon rank-sum test, p = 4 
× 10−9) (Figure 3e). AsRGs’s transcriptional 
activities were also exceptionally boosted during 
treatment (median fold-change from baseline: 
9.5, Wilcoxon signed-rank test, p = 2 × 10−8) 
(Figure 3f) and largely outperformed non-AsRGs 
(median fold-change from baseline: 1.5, 
Wilcoxon rank-sum test, p = 2 × 10−12). 

Noticeably, while the transcriptional activity of 
AsRGs was reduced after treatment (Figure 3b 
and 3f) (no significant difference between post- 
treatment and baseline), the DNA relative abun
dance of AsRGs did not decline even 3 months 
after treatment (median fold-change from T1 to 
T6: 2.7, Wilcoxon signed-rank test, p = 2 × 10−9) 
(Figure 3a and 3e).

Figure 3. DNA relative abundance and transcriptional activity (TA) of AsRG. In all panels, the red background indicates the antibiotic 
administration period. a-b. DNA relative abundance (a) and transcriptional activity (b) of tet family genes as AsRGs for doxycycline 
treatment. DNA abundances were calculated by transcripts per million mapped reads (TPM). AsRGs’ transcriptional activities were 
calculated by RNA (TPM)/DNA (TPM). c-d. DNA relative abundance (c) and transcriptional activity (TA) (d) of tet family genes as non- 
AsRGs. e-f. DNA relative abundance (e) and transcriptional activity (f) of all AsRGs and non-AsRGs The DNA abundance or relative TA 
were normalized to log2 fold-change of baseline level in all panels. The split violin plots demonstrate the distribution of DNA 
abundances or TAs, with the 25%, 50%, and 75% quantiles marked with white ticks. The line graphs represent the mean values.
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Virome-encoded ARGs expanded after antibiotic 
treatment

To further understand the basis for AsRG expansion 
during antibiotic treatment, we performed virome 
sequencing and assembly (Figure S6) (Phage library 
preparation and sequencing, Methods), enabling 
assessment of ARGs present in phage metagenomic 
data. Of 1,286 to 7,263 co-assembled contigs in the 
virome libraries from each sample, only 53.6% were 
marked with confidence as phage contigs (Figure S6a- 
b) (Phage contig filtration, Methods). Among these 
contigs, only 11.4% could be mapped to known phage 
genomes. Phage communities were highly individual- 
specific according to the Jaccard-like distances (Figure 
S6c-d).

In line with a previous report,23 ARGs were 
observed on only a few phage contigs (1 to 9 per 
individual with a median of 3.5, 0.17% of total phage 
contigs) (Figure S7a-b, Table S4). AsRGs were cap
tured on five contigs from four individuals (DOX-a, 
DOX-b, CFX-a, and AZY-b). To identify putative host 
species and search for potential integration and hor
izontal gene transfer (HGT) events, phage contigs 
were mapped against metagenomic contigs to identify 
phage-like contigs in the metagenome (Phage-like 
contig identification in metagenomes, Methods). 
For each ARG-containing phage contig, up to 44 
phage-like contigs (median: 1.5) were identified in 
the corresponding metagenomic dataset (Figure S7c, 
Table S4). Metagenomic contigs were assigned to 
a unique host species (Contig binning and contig- 
species assignment, Methods) by their species- 
specific marker genes28 or contig binning result.29 

For each ARG-carrying contig, after mapping to 
phage-like contigs in the metagenome, up to three 
species were inferred as the potential host species of 
the contig harboring ARG (Figure S7d). Using short- 
read metagenomic assembly, 66.8% of the phage-like 
contigs and 75.2% phage-like contigs with ARGs were 
short (<1 kb). This could be a result of high variability 
in the isoforms of the phage-like contigs that resulted 
from integration into different bacterial loci and host 
species. As a result, 25 of 39 phage contigs with ARGs 
were not assigned to any host species. One phage 
contig carrying AsRG tetQ was assigned to 
Bacteroides fragilis and B. caccae. B. caccae was 
a proliferating species in individual DOX-a, suggesting 

that phage-mediated HGT may have been involved in 
the dissemination of this AsRG.

AsRGs are frequently found on mobile genetic 
elements

Plasmid contigs and contigs with transposable ele
ments were also annotated from metagenomic 
assemblies:30 9,172 to 33,166 contigs (7.90%) were 
identified as potential plasmid contigs per individual 
(Table S5). We observed a strong tendency for AsRG 
to be present on mobile elements. In total, 39.6% of 
AsRGs were captured on mobile contigs compared to 
15.8% for non-AsRGs (Figure S8a). Phage-like con
tigs were the majority of mobile AsRGs (66.0% com
pared to 11.5% for non-AsRGs) (Figure S8b). Also, 
mobile AsRGs presented higher transcriptional activ
ities than non-mobile AsRGs (Wilcoxon rank-sum 
test, p = .03) (Figure 4a). These results suggest that 
mobile AsRGs were more actively involved than non- 
mobile AsRGs in bacterial host defense during anti
biotic treatment.

Mobile and non-mobile AsRGs did not show 
DNA relative abundance differentiation during 
treatment (Wilcoxon rank-sum test, p = .23); how
ever, a discrepancy was seen after treatment (med
ian TPM: 19.1 for mobile vs. 3.5 for non-mobile, 
Wilcoxon rank-sum test, p = 3 × 10−6) (Figure 4b). 
Both mobile and non-mobile AsRG abundances 
emerged and remained high even 3 months after 
the antibiotic treatment (4.3 and 2.8 folds of the 
baseline level in T6, respectively). The persistently 
high relative abundance of mobile AsRGs sup
ported that mobile elements such as phages and 
plasmids contributed to the expansion of the anti
biotic-specific resistance reservoir.

Mobile AsRGs expanded the resistance reservoir via 
potential HGT events

We noted that alternative phage integration iso
forms could be supported by cross-contig read 
pairs, where a read is mapped to a prophage region, 
while its mate is mapped to a different contig (mate 
contig) (Figure 5a). To trace the ARG proliferation 
via potential HGT events mediated by phage inte
grations, these read pairs were analyzed as HGT- 
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supporting read pairs (HGT-supporting read pair 
extraction, Methods), and the species host 
assigned to the mate contigs were analyzed as 
potential HGT-target species. As the mobility of 
phage-like contigs with ARGs resulted in more 
fragmented contig assemblies, a large number of 
read pairs were observed to be mapped to different 
contigs, especially for AsRG-carriers (50.7% vs. 
39.0% for non-AsRG carriers) (Figure 5b). Read 
pairs from two contigs that mapped to different 
host species were analyzed as HGT-supporting 
read pairs, which presented in low proportion 
(0.12% of total mapped read pairs for AsRG- 
carrying contigs), while AsRG-carrying HGT- 
supporting read pairs were only observed in one 
individual treated with doxycycline (DOX-a). The 
relative abundance of AsRG-carrying HGT- 
supporting read pairs increased during treatment 
and remained high after treatment in DOX-a, while 
the non-AsRG carrying read pairs decreased and 
remained stable for all antibiotic-treated indivi
duals (Figure 5c). More specifically, AsRGs tetW 
and tetQ from individual DOX-a exhibited a higher 
number of HGT-target species and HGT- 
supporting read pairs after treatment (Figure 6). 
Noticeably, several of such HGT-target species 
were found in proliferating species and/or AsRG 
carrier species.

Discussion

Antibiotics are commonly used prophylactically or to 
treat infections. Previous studies evaluated antibiotics 
as adriving factor in gut microbiome modulation and 

reported the resilience of dominant microbiome 
members after short-term antibiotic exposure.3,6,24 In 
our small cohort of antibiotic-treated healthy volun
teers, we observed a rapid decline in community 
diversity during antibiotic administration and post- 
treatment, with several species becoming undetectable 
and not recovering within 3 months. We observed 
distinct responses to different antibiotics and an over
all growth advantage for Gram-negative species dur
ing treatment. We note that the small size of our 
cohort could mean that part of the variability we 
observed might be attributed to differences in diet, 
sex, and age between individuals. We tried to account 
for this possibility by using randomization and by 
including control participants and collecting baseline 
samples, but certainly larger studies are needed to 
confirm the trends observed in this present study.

Similar to a recent study on the resistome,3 the 
overall ARG abundance did not exhibit substantial 
perturbations during antibiotic treatment. 
However, we identified expansion in AsRGs with 
presumed resistance to the administered antibiotics 
as a long-term consequence of antibiotic adminis
tration. We used metatranscriptomic sequencing to 
reveal the exceptionally high transcriptional activ
ity (9-fold higher than baseline in average) of 
AsRGs during treatment, supporting their impor
tance in bacterial host defense.

Reports of post-treatment expansion of some 
ARG families3,24 raised the question of how the 
recovery of taxonomic composition and functional 
profiles supported the expansion of ARGs, which 
must involve the persistence of ARG carrier species. 
As previous studies have proved the capacity of 

Figure 4. Transcriptional activity (TA) (a) and DNA abundance (b) of mobile and non-mobile AsRGs. FC, fold-change; lg TPM, log10 

transcripts per kilobase per million mapped reads. The red background indicates the antibiotic administration period in all panels.
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HGT event identification from paired-end 
signals,31,32 we addressed this question using paired 
phage library sequencing and plasmid identification, 
which identified significant enrichment of AsRGs 
within the mobilome (the collection of mobile ele
ments in a microbiome). This would suggest an 
increased potential for HGT, which was supported 
by analysis of HGT-supporting paired sequencing 
reads partially mapping to the phage-like contigs. 
These data support the hypothesis that HGT events 
of AsRGs may occur during antibiotic treatment. 
Subsequent studies with larger cohorts could benefit 
from deploying longer read sequencing technology 
to pinpoint such HGT events.

A major limitation of this study is its reliance on 
sequencing data and functional annotations and 
computational inferences of HGT relationships. 
While we have deployed validated approaches for 
our computational assessments, our conclusions 
are limited by our current knowledge. We encou
rage further work on functional validation of anti
biotic resistance genes, high-throughput 
cultivation, and sequencing to further increase our 
knowledge of antibiotic treatment on the gut 
microbiome.33

Our data and analysis suggest that the resistome 
of healthy individuals is broadly resilient to short- 
term antibiotic treatment. Yet, AsRGs stably 
increase in relative abundance for a period of at 
least 3 months until completion of antibiotic treat
ment, providing further evidence in support of 
good antibiotic stewardship.

Materials and methods

Study design

Ten healthy adult volunteers, aged 18–65 years, 
were recruited to provide stool samples over 
a 4-month period, before, during, and after anti
biotic exposure. Participants had not received 
antibiotic treatment 1 year prior to study enroll
ment, nor they ever experienced allergic reactions 
to the antibiotic class used in the study. 
Participants did not follow special dietary habits 
(vegetarian or vegan). To reduce the effect of 
individual variation, all volunteers were treated 
in parallel with a single antibiotic (Table S1). 
Four antibiotics from different chemical and ther
apeutic classes were used: ciprofloxacin 

Figure 6. HGT-supporting read counts over time and the host species of the mate contigs. The titles for the four subpanels are the 
phage-like contig IDs and their carrying AsRGs. Four mate contig host species were discovered with AsRGs, and two species are 
proliferating species. Examples from individual DOX-a have shown that more potential HGT-target species were observed in treatment 
and post-treatment samples and the HGT-target species had a high probability of being a proliferating species or an AsRG carrier.
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(quinolone class), cefuroxime (β-lactam class), 
doxycycline (tetracycline class), and azithromycin 
(macrolide class). As a control, stool samples from 
two untreated healthy individuals also were pro
cessed. Treatments were assigned through rando
mization by drawing an opaque envelope. After 
allocation, the trial was open label.

Sampling

Six stool samples from each participant were 
obtained as one sample 15 days before treatment 
± 1 day (T1), two samples on the third (T2) and 
fifth day (T3) of antibiotic treatment ± 1 day, and 
three samples at 15 (T4), 30 (T5), and 90 days (T6) 
after treatment ± 1 day. Samples were immediately 
stored at −18 °C at volunteers’ homes and trans
ported to the hospital within 14 days, packed to 
prevent thawing. Upon arrival at the hospital, sam
ples were stored at – 80 °C until processing.

DNA extraction

DNA was extracted from 5 g aliquots of a frozen stool 
using an MO BIO PowerMax Soil DNA Extraction Kit 
(MO BIO Laboratories, Inc) according to the manu
facturer’s protocol with a few modifications. Stool 
samples were stored at – 80 °C in sterile 50 ml 
Falcon tubes until extraction. To samples, 15 ml MO 
BIO PowerBead Solution and MO BIO Garnet beads 
were added before vortexing for 1 min at maximum 
speed using a horizontal vortex adopter (SI-H506, 
Horizontal 50 mL Tube Holder, Scientific 
Industries). Solution C1 (1.4 ml) was added before 
incubation at 65 °C for 30 min with shaking at 
130 rpm. Samples were vortexed for 10 min at a max
imum speed, 6 ml Solution C2 was added, and samples 
were incubated at 4 °C at 20 min and processed per 
MO BIO instructions.

DNA purification

After extraction, DNA was purified with 
PowerClean Pro DNA Clean-Up Kits (MO BIO 
Laboratories, Inc.) according to the manufacturer’s 
protocol. When necessary, isolated DNA was con
centrated to >50 ng/uL using a vacuum concentra
tor (Concentrator plus, Eppendorf). The DNA 
quantity was measured using Qubit 2.0 

Fluorometer (Thermo Fisher Scientific Inc.). The 
DNA quality was measured using a NanoDrop ND- 
1000 spectrophotometer (Thermo Fisher Scientific) 
and size was examined by gel electrophoresis of 5 µl 
DNA on a 1% (w/v) agarose gel with RedSafe 
Nucleic Acid Staining Solution (iNtRON 
Biotechnology).

DNA library preparation and sequencing

DNA samples were sent to Macrogen (South 
Korea) for library preparation and sequencing 
(Illumina Hiseq 2000 PE125). DNA libraries for 
sequencing were using TrueSeq Nano 550 bp kits 
(Illumina). The input template was 200 ng accord
ing to kit instructions. Sequencing depth was set as 
up to a minimum of 6 GB data per sample.

RNA extraction

RNA extraction was by MO BIO PowerMicrobiome™ 
RNA Isolation Kit (MO BIO Laboratories, Inc.) 
according to manufacturer’s instructions. RNA was 
stored at −80 C until processing.

RNA library preparation and sequencing

RNA samples were sent to Macrogen (South Korea) 
for library preparation and sequencing (Illumina 
Hiseq 2000 PE125). For each sample, 2.5 μg total 
RNA was used as input for rRNA, which was pro
cessed using Ribo-Zero Gold rRNA removal kits – 
Epidemiology (Illumina). RNA libraries were con
structed using Trueseq RNA library preparation kits 
(Illumina) according to manufacturer’s instructions. 
Two platforms were used for RNA sequencing with 
balanced data output (Illumina Hiseq 2500 PE125 and 
Illumina NextSeq PE75). Sequencing depth was set as 
up to a minimum of 2 GB per sample.

Phage DNA extraction

Phage particles were isolated from 5 g aliquots of 
frozen stool with 50 ml Phage Buffer (10 mM Tris, 
pH 7.5, 10 mM MgCl2, 68 mM NaCl, 1 mM CaCl2) 
before homogenization by vortexing for 20 min at 
the highest speed (SI-H506, Horizontal 50-mL 
Tube Holder, Scientific Industries). Samples were 
centrifuged 3 times at 4 °C: 2 min at 872 × g, 10 min 
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at 3800 × g, and 20 min at 7500 × g. After each 
centrifugation, supernatants were transferred to 
new 50 ml Falcon tubes and pellets discarded. 
Supernatants were filtered through 0.22 µm filters 
(EMD Millipore Sterivex-GP SVGPL10RC 
Polyethersulfone Filter Unit, Millipore). To con
centrate virus particles, 10 ml of filtered superna
tants were concentrated to 1 ml by centrifugation 
with 100 Da Amicon Ultra filters (Amicon Ultra-15 
Centrifugal Filter Units, Millipore) at 3488 × g at 15 
°C. Supernatants in Amicon tubes were washed two 
times with 5 ml Phage Buffer and volumes adjusted 
to 1 ml. Supernatants were filtered through 0.45 µm 
syringe filters (Cellulose acetate membrane syringe 
filter, Filter Technology) into 1.5 ml phase-lock gel 
tubes (5 PRIME), 40 µL lysozyme (10 mg/mL, 
Sigma-Aldrich) was added, and filtrates incubated 
for 30 min at 37 °C under shaking at 300 rpm. After 
the incubation, 400 µL chloroform was added to 
samples before incubating for 15 min at room tem
perature with gentle inversion every 2 minutes. 
Samples were centrifuged at 14,000 × g for 5 min 
at room temperature and supernatants transferred 
to 1.5 ml Eppendorf tubes. A mix of 500 U bovine 
pancreas DNase I recombinant (Roche), 33 U 
Baseline-ZERO DNase (Epicenter), 6 U Salt 
Active Nuclease (ArcticZymes), and 500 U RNase 
A (Roche) was added to samples with 100 µl 
10× Incubation buffer (Roche) for incubation at 
37 °C for 90 min followed by DNase inactivation 
at 75 °C for 10 min. After the DNase/RNase treat
ment, phage particles were stored overnight at 4 °C. 
Phage DNA was extracted using Phage DNA 
Isolation Kits (Norgen Biotek) according to the 
manufacturer’s protocol. DNA quantity was mea
sured using a Qubit 2.0 Fluorometer (Thermo 
Fisher Scientific Inc.). Phage DNA samples were 
stored at −80 °C.

Control for bacterial contamination in phage DNA 
extractions

Full-length 16S rRNA gene (1503 bp) was amplified 
with 16S_up (AAGAGTTTGATCCTGGCTCAG) 
and 16S_lp (TACGGCTACCTTGTTACGACTT) 
primers34 from Pseudomonas aeruginosa PAO1 
reference strain (NC_002516) by quantitative PCR 
(qPCR). The template for qPCR reactions with 
SYBR Green Master Mix (Thermofisher) was 0.5 

ng phage DNA. All samples were amplified by 
qPCR with triplicates of standards with known 
gene copy numbers and negative controls. 
Standards were 10-fold dilutions of purified, full- 
length 16S rRNA gene amplicons. Phage DNA 
samples with higher cycle amplifications (above 28 
Ct corresponding 102 gene copies) were discarded 
and phage DNA extraction was repeated. Phage 
DNA below the threshold of detection for 16S 
rRNA gene copies (102) was used for next- 
generation sequencing library preparations.

Phage library preparation and sequencing

Phage DNA libraries were prepared using KAPA 
HyperPlus Kits (Kapa Biosystems). All steps were 
on ice except two clean-ups that were at room 
temperature. Samples of 2.5 ng phage DNA were 
diluted in 17.5 µl 10 mM Tris-HCl (pH 8.0–8.5). 
Enzymatic fragmentation was achieved by adding 
2.5 µl KAPA Frag Buffer (10X) and 5 µl of KAPA 
Frag Enzyme to DNA dilutions in PCR tubes. Tubes 
were vortexed gently and spun down briefly, then 
incubated at 37 °C for 30 min in a thermocycler that 
was pre-cooled to 4 °C. After adding End-repair and 
A-tailing buffer, PCR tubes were vortexed and spun 
down and immediately incubated at 65 °C for 
30 min in a thermocycler with the lid preheated to 
85 °C. Adapter ligation reactions were in the same 
tubes with an addition of 3.75 µl PCR-grade water, 
15 µl Ligation Buffer, 5 µl DNA ligase, and 1.25 µl 
750 pM single adapters (Pentabase). Tubes were 
mixed thoroughly and centrifuged briefly and incu
bated at 20 °C for 60 min. Products were cleaned 
using Agencourt AMPure XP reagent at a ratio of 
1:0.7 (adapter ligation reaction product: reagent). 
Reagent and product were mixed by pipetting 10 
times followed by short spin down centrifugation. 
Mixtures were left for 15 min at room temperature 
to bind DNA to beads. Beads were captured by 
magnets for 5 min and supernatants were carefully 
removed and discarded. With tubes still on the 
magnet, 200 µl freshly prepared 80% ethanol was 
added with incubation for 30 s. Ethanol was dis
carded and the ethanol washes repeated. Tubes were 
left on the magnet for 5 min to dry the beads before 
resuspending them in 12.5 µL 10 mM Tris-HCl, pH 
8.0–8.5 and vortexing for 30 s. Beads were incubated 
at room temperature for 2 min to elute DNA, then 
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captured by a magnet for 5 min. Supernatants were 
transferred to new tubes and 12.5 µl 2X KAPA HiFi 
HotStart ReadyMix and 2.5 10X KAPA Library 
Amplification Primer Mix were added to 10 µl 
adapter-ligated library. Reagents were mixed and 
tubes centrifuged briefly. Library amplification 
used the cycling protocol: 1 cycle 98 °C, 45 s; fol
lowed by 14 cycles of 98 °C for 15 s, 60 °C for 30 s, 
and 72 °C for 30 s, with a final extension at 72 °C for 
1 min. Post-amplification cleanup was as described 
above. Concentrations were measured using a Qubit 
2.0 Fluorometer (Thermo Fisher Scientific Inc.), 
and library size (average 500–900 bp) was deter
mined using a Bioanalyzer (Agilent 2100 
Bioanalyzer system, Agilent Technologies). 
Libraries are pooled and sequenced on a MiSeq 
platform (PE300).

Nucleic acid extraction and sequencing control

Reference strain E. coli MG1655 transformed with 
pzZE21mCherry was used as a control for the 
nucleic acid extraction and sequencing protocols. 
Sequencing reads were mapped to a reference gen
ome using CLC Genomic Workbench (version 
released in 2015). More than 99.5% of reads are 
mapped back to the reference genome.

Sequencing data quality control

All raw reads from DNA, RNA, and phage libraries 
underwent quality trimming using a previously 
described pipeline35 to filter out adapters and uni
versal primer sequences, low-quality bases (<Q20), 
reads shorter than 75 bp PE125 (and 30 bp for PE75 
read obtained on NextSeq), duplication reads and 
reads mapping to the human genome with over 
95% identity. Computational scripts are at https:// 
github.com/TingtZHENG/VirMiner/. Quality con
trol results are summarized in Data S1.

rRNA removal from RNA sequencing clean data

Removal of rRNA was by riboPicker (version 
0.4.3)36 against the non-redundant rRNA database 
(riboPicker, downloaded from http://edwards.sdsu. 
edu/ribopicker/rrnadb/rnadb_2012-01-17.tar.gz) 
with arguments “-c 80 -i 90”. The results are sum
marized in Data S1.

In silico estimation of bacterial contamination in 
virome

We compared the 16S rRNA gene content in vir
ome and whole metagenome samples. First, viral 
reads were truncated to 125 bp to match the read 
length of the whole metagenome dataset. 
Subsequently, both datasets were mapped against 
the SILVA database (v.123)37 using bwa mem v. 
0.7.1538 and the number of unique reads mapped 
with at least 90% identity was counted for both. 
Finally, the percentage of 16S reads within the 
entire read set of each sample was calculated and 
compared with published virome datasets 
(MetaVir)39 (Figure S8).

De novo assembly

The de Bruijn graph-based assembler IDBA-UD (v. 
1.1.1)40 was used for de novo assembly. Clean reads 
from all time points for each individual were 
pooled for the co-assembly of metagenome and 
virome, respectively. For metagenomes, parameters 
for IDBA-UD were: “-mink 40 -maxk 100 -step 10 - 
num_threads 24 – min_contig 300 -pre_correc
tion”. For viromes with PE300 sequencing, 
k = 180 was selected as the max kmer length. Two 
modifications were made in the source code before 
compiling IDBA_UD: in file src/basic/kmer.h, con
stant kNumUint64 was changed from 4 to 8 to allow 
maximum kmer length beyond 124; in file src/ 
sequence/short_sequence.h, constant 
kMaxShortSequence was set to 512 to support 
longer read length. Virome co-assembly used para
meters: “-mink 20 -maxk 180 -step 20 -num 
_threads 24 – min_contig 800 -pre_correction”. 
After co-assembly, paired-end reads from the meta
genomic DNA/RNA libraries were aligned to the 
metagenomic assemblies, while the viral DNA 
reads were aligned to the viromic assemblies using 
bwa “mem” model (v. 0.7.15).38 Statistics of 
mapped and unmapped reads were calculated 
using samtools with function “flagstat” (v. 1.3.1).41 

Overall, final assemblies had mean mapping per
centages of 82.3% to 91.4% for metagenomic con
tigs (Table S6) and 76.4% to 93.3% for viromic 
contigs (Table S7). Samtools functions “depth -aa” 
and “idxstats” were used to calculate contig cover
age and depth and per-locus depth.
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Updated phage orthologous group (uPOG) database
We used an updated POG database for phage gene 
annotation – uPOG.42 The uPOGs are available on 
our website (http://147.8.185.62/VirMiner/down 
loads/updated_POG_database/).

Open reading frame (ORF) prediction and 
annotation

For metagenomes, MetaGeneMark was adopted to 
predict coding DNA sequence (CDS) regions in 
assembled metagenome contigs using default 
parameters.43 The functional COG category for each 
protein was assigned using the National Center for 
Biotechnology Information rps-BLAST44 with the 
parameter “-e 1e-5”. Protein sequences were aligned 
to the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) database45 using Diamond blastp46 with the 
parameter “-e 1e-5”. For viromes, ORFs were pre
dicted by GeneMarkS v4.347 with the parameter “– 
phage”. Predicted ORFs from metagenomic and viro
mic contigs were mapped against Pfam,48 POG 
2012,49 and uPOG databases by DIAMOND blastp46 

with parameters “–id 70 -e 1e-5” and the top hits were 
selected.

Antibiotic resistance gene homolog (ARG) 
annotation

The CARD database50 and the accompanying 
Resistance Gene Identifier (RGI) pipeline were used 
to annotate ARGs in the metagenome and the virome. 
For metagenomes, protein sequences of predicted 
ORFs were used as input. For viromes, input was 
viral contig sequences. The RGI hits with “Perfect” 
and “Strict” identification were used as qualified 
ARG annotations.

Antibiotic-specific resistance gene homolog (AsRG) 
annotation

To identify ARG homologs with proven resis
tance to each antibiotic given to the study parti
cipants, we compiled a list of AsRGs from 
previous literature (Table S3). Genes with no 
annotation hit in the metagenomes were 
removed. The list was further verified by 
CARD50 and only genes listed as “confers_resis
tance_to_drug” in “Sub-Term(s)” of each 

antibiotic were kept. For potential AsRGs in 
the mobilome (virome, phage-like contigs, plas
mid contigs, and contigs with TE), only the RGI 
hits with “Perfect” or “Strict” identification and 
a minimum identity of 95% were kept.

Calculation of transcriptional activity

A gene or contig’s DNA and RNA abundances were 
calculated by transcripts per million mapped reads 
(TPM). Only genes with detectable abundances 
(TPM > 1e-5) across all time points were analyzed 
for DNA abundance. For the genes, contig, or gene 
sets with detectable DNA and RNA abundances 
(TPM > 1e-5) across all time points, transcriptional 
activity (TA) was calculated as TA = RNA (TPM)/ 
DNA (TPM). Log2 transformation for TA was 
applied before statistical tests.

Taxonomic assignment of phage contigs

The RefSeq51 database of viral reference gen
omes Release 81 (March 2017) was used to 
map contigs from each assembly using blastn44 

with filtration criteria: E < 1e-4, identity > 70% 
and coverage > 50%. Contigs that were shorter 
than 3 kb were discarded. The relative abun
dance of each contig with a reference viral gen
ome hit was calculated as transcripts per 
kilobase per million mapped reads (TPM). For 
each viral family, the relative abundance was 
calculated as the sum of TPM of all contigs 
assigned to the viral family.

Phage contig verification by VirSorter and VirFinder

All phage library contigs were analyzed by 
VirSorter52 with “virome database” and “virome de- 
contamination” modes. Contigs classified in any 
viral categories or as prophages were considered 
viral. VirFinder53 analysis used default settings 
and contigs with a false discovery rate (FDR) 
below 0.05 were considered viral.

Phage-like contig identification in metagenomes

Phage library contigs were mapped against meta
genomic contigs to find target phage-like contigs 
and phage integration sites in metagenomes. 
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MegaBlast44 was applied with parameters “–id 90 -e 
1e-5”. Mapped regions with unmapped gaps smal
ler than 100 bp were catenated. Metagenomic con
tigs with coverage greater than 50% of the phage 
contig were identified as phage-like contigs in 
metagenomes.

Phage contig filtration

Phage library contigs meeting at least two of the 
following criteria were marked as confident phage 
contigs: 1) annotated with uPOG gene; 2) anno
tated with viral genes from PFam; 3) mapped to 
known phage genome in RefSeq; 4) identified as 
viral contig by VirSorter; 5) identified as viral contig 
by VirFinder; 6) mapped to at least three target 
phage-like contigs in the metagenome. Only con
fident phage contigs were used in downstream ana
lyses. Contigs meeting only one criterion were 
marked as “suspicious phage contigs” with others 
marked as “contaminant contigs.

Plasmid contig annotation

Due to the complexity of a metagenome and the 
presence of homologous sequences from differ
ent species, metagenomic assemblies always yield 
fragmented contigs and invisible mis-assemblies. 
Thus, a traditional plasmid identification tool 
that relies on circular contig assembly of high 
quality may not be the best practice for meta
genome assemblies. Thus, we employed 
PlasFlow,30 a neural network-based tool to iden
tify potential plasmid contigs from models 
trained by kmer frequencies. Among the meta
genomic contigs longer than 1kbp, plasmid con
tigs were annotated with PlasFlow v1.0 with the 
parameters and default models (k = 5, 6, 7, 
respectively). Among the results, entries marked 
as “unclassified” or “chromosome” were dis
carded, and contigs binned as “plasmid” with 
a probability score over 0.7 were kept as plasmid 
contigs. The ARGs on these plasmid contigs 
were marked as mobile ARGs.

Transposable element annotation

These elements in metagenomic contigs were anno
tated using the database ISFinder.54 ORF protein 

sequences and contig nucleotide sequences were 
mapped against, respectively, ISFinder protein and 
nucleotide databases using Diamond blastp46 or 
blastn44 with parameters “–id 70 -e 1e-5”. Contigs 
with mapped transposable elements (TE) were 
marked as contigs with transposable elements.

Identification of mobile contigs and mobile AsRGs

Metagenomic contigs annotated as phage-like con
tigs, plasmid contigs, or contigs with transposable 
elements were classified as mobile contigs. Identified 
AsRGs on these contigs were classified as mobile 
AsRGs. For each individual and each species ARG 
profile, identified AsRGs with no mobile copies in 
that species were classified as non-mobile AsRGs.

Species-specific marker gene annotation

Species marker gene profiles were obtained through 
MiDAS28 with arguments “run_midas.py genes -s very- 
sensitive – species_cov 0.1”, for samples with efficient 
read depth (“merge_midas.py genes -sample_depth 
0.1”). Functional profiles (Gene Ontology, KEGG 
Orthology, Enzyme Commission number (EC)) were 
further summarized based on annotations from the 
MiDAS reference database (midas_db_v1.2). 
Metagenomic ORFs were mapped against this marker 
gene database using Diamond blastp.46 All hits with 
identity over 70% and E-value less than 1e-5 were kept 
for contig-to-species assignment.

Contig binning and contig-species assignment

For each individual, co-assembled metagenomic contigs 
were binned using MaxBin 2.2.429 with the default 
parameters. For each contig or contig bin, species- 
specific marker genes were summarized. If more than 
70% of the species-specific marker genes appeared in 
a contig or a contig bin could be assigned to a single 
candidate species with only one candidate species iden
tified, then the contig or contig bin was assigned to that 
species. If a contig was successfully assigned to a host 
species, the species for its contig bin was then ignored. If 
a contig could not be assigned to a host species, while its 
bin could be assigned to a host species, then the contig 
bin’s host species was assigned to the contig. All the 
functional genes on a contig, including ARGs, were 
assigned to the contig’s host species.
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HGT-supporting read pair extraction

Reads mapped to phage-contig homologous 
regions on phage-like contigs were extracted by 
samtools function “view”41 and mate reads were 
extracted from bam files using grep command. 
Read pairs with reads mapped to different contigs 
were kept for cross-contig read-pair analysis. 
A read pair is defined as an HGT-supporting read 
pair if the ARG-carrying contig and its mate contigs 
were assigned to different host species.

Metagenome taxonomic assignment

The relative abundance of taxa was analyzed using 
MetaPhlAn2 with default settings.55 Different data
bases may use different names for the same species. 
Thus, we aligned the species names used in this 
manuscript, MetaPhlAn2, and MiDAS (used for 
the contig-species assignment) and summarized 
the information in Data S2.

Community diversity and dissimilarity

For metagenomes, species-level taxonomic profiles were 
used as input for alpha-diversity and beta-diversity ana
lyses. Alpha-diversity was represented by Shannon index 
and beta-diversity by Bray–Curtis distances, both using 
the vegan R package.56 For viromes, alpha-diversity 
(Shannon index using vegan) was calculated on the 
relative abundance matrix of confident phage contigs 
(in TPM). For beta-diversity, MASH57 MinHash sketch 
strategy for estimating the Jaccard index was used to 
estimate dissimilarity between samples. Briefly, a mash 
sketch for each read file from each time point was 
derived and distances of all-against-all sketches were 
calculated. Ordinations for the beta-diversity analysis 
were calculated by nonmetric multidimensional scaling 
for illustrations.

Categorization of special species

Species were categorized into three groups based on the 
following criteria: 1. Disappeared: the species undetected 
in all post-treatment samples (T4 to T6); 2. New: the 
species undetected in the baseline, but persistently abun
dant (relative abundance > 0.1%) in all post-treatment 
samples (T4 to T6); 3. Proliferating: the species meeting 
any of the two criteria: 1) a species with a relative 

abundance < 0.1% in baseline and reached 5% in T2 
or T3, or 2) a species with a relative abundance ≥ 0.1% in 
baseline and increased by at least 10-fold in the relative 
abundance in T2 or T3.

Growth rate index (GRiD) calculation

GRiD was calculated according to a previously published 
method25 with the following parameters: “grid multiplex 
-d/sbidata/shared2/GRiD/Stool -p -c 0.2 -m”. GRiD may 
generate not applicable (NA) values for all species in one 
sample; thus, such time points (T3 for DOX-a and T4 
for CTR-a) were considered invalid and excluded from 
analyses. For statistics, we kept only the species with no 
NA values across all valid time points.

Gram-positive and gram-negative species

Bacterial species and strain information were acquired 
from PATRIC,26 visited in November 2017. Bacterial 
species with all strains with the same (or missing) Gram- 
staining type were assigned as Gram-positive or Gram- 
negative species. Species with conflicting Gram-staining 
types for different strains were categorized as dubious.

Statistics and data visualization

Statistics were done in R,58 with data visualization by 
R and corresponding packages including ggplot2,59 

grid,60 gridExtra,61 RColorBrewer,62 ellipse,63 and 
pheatmap.64 Two-tailed Wilcoxon signed-rank test was 
performed for comparisons of paired data in nonpara
metric statistics. Two-tailed Wilcoxon rank-sum tests 
were performed for comparisons of unpaired data in 
nonparametric statistics. Adonis tests were applied to 
address community dissimilarity. Fisher’s exact tests 
(only when there are less than 5 observations in a table 
cell) or Pearson’s chi-square tests were performed for 
2 × 2 tables for independence test. The significance 
threshold was set to p < .05 or false discovery rate 
(FDR) < 0.05.

Declarations

Ethics approval and consent to participate

This study has been assigned for our sponsor’s Protocol Code 
Number 2013071339 with Danish Medical Authority and 
EudraCT number is 2013-003378-28. Both oral and written 

e1900995-16 K. KANG ET AL.



consent were obtained from the study participants.

Consent for publication

The manuscript does not contain individual person data in 
any form.

Availability of data and material

Raw sequencing data is published at NCBI SAR with the project 
ID PRJNA588313 and sample category ID SAMN13241759. 
Raw data for DNA libraries: SRR10423895 to SRR10423894; 
RNA libraries: SRR10420935 to SRR10420934; virome libraries: 
SRR10417995 to SRR10418053. Intermediate data and codes are 
available at http://sbb.hku.hk/Resistome.

Competing interests

The authors declare no competing interests.

Author’s contributions

Conceptualizations: M.O.A.S. and L.I.; Funding research: M.O.A. 
S. and G.P.; Investigations: L.I., M.B.S., A.A.R. and M.C.L.; 
Methodology: A.A.R., L.I., K.K., J.L., Y.H., M.B.S., M.AM., M. 
O.A.S. and P.B.; Project administration: L.I. and A.A.R.; 
Resources: M.O.A.S., G. P. and P.B.; Supervision: M.O.A.S., L. 
I. and G.P.; Data analyses: K.K., L.I., M.A.M., Y.H., Y.N., T.Z., J. 
L. and M.M.H.E.; Visualization: K.K., L.I., M.A.M. and Y.H.; 
Validation: all authors; Writing – Original Draft: K.K., L.I. and 
M.A.M; Writing – Review and Editing: K.K., M.A.M., L.I., A.A. 
R., G.P. and M.O.A.S.

Acknowledgments

We acknowledge Macrogen Europe for fecal sample DNA and 
RNA sample sequencing. We thank Anna Koza at DTU 
Biosustain for phage DNA sequencing.

Funding

This study was supported by funding from The Novo Nordisk 
Foundation under NFF grant number: NNF10CC1016517, 
The European Union H2020 (ERC-2014-STG) under Grant 
Agreement 638902 (LimitMDR), The European Union PF7 
(Health-2011-single-stage) under Grant Agreement 282004 
(Evotar), Danish Council for Independent Research Sapere 
Aude Program DFF 4004-00213 and the Lundbeck 
Foundation under grant agreement R140-2013-13496.  
G.P. would like to thank Deutsche Forschungsgemeinschaft 

(DFG) CRC/Transregio 124 “Pathogenic fungi and their 
human host: Networks of interaction”, subproject B5.

ORCID

Kang Kang http://orcid.org/0000-0002-7992-282X
Lejla Imamovic http://orcid.org/0000-0003-1662-9447
Maria-Anna Misiakou http://orcid.org/0000-0002-9965- 
4164
Mostafa M. H. Ellabaan http://orcid.org/0000-0002-9736- 
0461
Marta Colomer-Lluch http://orcid.org/0000-0001-5233- 
3606
Anne A. Rode http://orcid.org/0000-0003-4995-5169
Peter Bytzer http://orcid.org/0000-0001-8953-5842
Gianni Panagiotou http://orcid.org/0000-0001-9393-124X
Morten O.A. Sommer http://orcid.org/0000-0003-4005- 
5674

References

1. Lynch SV, Pedersen O. The human intestinal micro
biome in health and disease. N Engl J Med. 2016.375 
(24):2369–2379. doi:10.1056/NEJMra1600266.

2. Maurice CF, Haiser HJ, Turnbaugh PJ. Xenobiotics 
shape the physiology and gene expression of the active 
human gut microbiome. Cell. 2013.152(1–2):39–50. 
doi:10.1016/j.cell.2012.10.052.

3. Palleja A, Mikkelsen KH, Forslund SK, Kashani A, Allin 
KH, Nielsen T, Hansen TH, Liang S, Feng Q, Zhang C, 
et al. Recovery of gut microbiota of healthy adults fol
lowing antibiotic exposure. Nat Microbiol. 2018.3 
(11):1255–1265. doi:10.1038/s41564-018-0257-9.

4. Morgun A, Dzutsev A, Dong X, Greer RL, Sexton DJ, 
Ravel J, Schuster M, Hsiao W, Matzinger P, Shulzhenko 
N. Uncovering effects of antibiotics on the host and micro
biota using transkingdom gene networks. Gut. 2015.64 
(11):1732–1743. doi:10.1136/gutjnl-2014-308820.

5. Dethlefsen L, Huse S, Sogin ML, Relman DA. The pervasive 
effects of an antibiotic on the human gut microbiota, as 
revealed by deep 16S rRNA sequencing. PLoS Biol. 2008.6: 
e280.

6. Dethlefsen L, Relman DA. Incomplete recovery and indivi
dualized responses of the human distal gut microbiota to 
repeated antibiotic perturbation. Proc Natl Acad Sci U S A. 
2011.108(Suppl 1):4554–4561. doi:10.1073/pnas.1000087107.

7. Tamma PD, Avdic E, Li DX, Dzintars K, Cosgrove SE. 
Association of adverse events with antibiotic use in 
hospitalized patients. JAMA Intern Med. 2017.177 
(9):1308–1315. doi:10.1001/jamainternmed.2017.1938.

8. McFarland LV, Mulligan ME, Kwok RY, Stamm WE. 
Nosocomial Acquisition of Clostridium difficile 
Infection. N Engl J Med. 1989.320(4):204–210. 
doi:10.1056/NEJM198901263200402.

9. European Commission. Special Eurobarometer. Vol. 
445. Report: Antimicrobial Resistance. 2016. © 
European Union. Available at https://ec.europa.eu/ 
health/sites/health/files/antimicrobial_resistance/docs/ 
eb445_amr_generalsummary_en.pdf

GUT MICROBES e1900995-17

http://sbb.hku.hk/Resistome
https://doi.org/10.1056/NEJMra1600266
https://doi.org/10.1016/j.cell.2012.10.052
https://doi.org/10.1038/s41564-018-0257-9
https://doi.org/10.1136/gutjnl-2014-308820
https://doi.org/10.1073/pnas.1000087107
https://doi.org/10.1001/jamainternmed.2017.1938
https://doi.org/10.1056/NEJM198901263200402


10. Calero-Caceres W, Muniesa M. Persistence of naturally 
occurring antibiotic resistance genes in the bacteria and 
bacteriophage fractions of wastewater. Water Res. 
2016.95:11–18. doi:10.1016/j.watres.2016.03.006.

11. Perez-Cobas AE, Artacho A, Knecht H, Ferrus ML, 
Friedrichs A, Ott SJ, Moya A, Latorre A, Gosalbes MJ. 
Differential effects of antibiotic therapy on the structure 
and function of human gut microbiota. PLoS One. 
2013.8(11):e80201. doi:10.1371/journal.pone.0080201.

12. Sommer MOA, Dantas G, Church GM. Functional 
characterization of the antibiotic resistance reservoir 
in the human microflora. Science. 2009.325 
(5944):1128–1131. doi:10.1126/science.1176950.

13. Jakobsson HE, Jernberg C, Andersson AF, Sjolund- 
Karlsson M, Jansson JK, Engstrand L. Short-term anti
biotic treatment has differing long-term impacts on the 
human throat and gut microbiome. PLoS One. 2010.5 
(3):e9836. doi:10.1371/journal.pone.0009836.

14. Levin-Reisman I, Ronin I, Gefen O, Braniss I, 
Shoresh N, Balaban NQ. Antibiotic tolerance facilitates 
the evolution of resistance. Science. 2017.355 
(6327):826–830. doi:10.1126/science.aaj2191.

15. Rosenkilde CEH, Munck C, Porse A, Linkevicius M, 
Andersson DI, Sommer MOA. Collateral sensitivity 
constrains resistance evolution of the CTX-M-15 
beta-lactamase. Nat Commun. 2019.10(1):618. 
doi:10.1038/s41467-019-08529-y.

16. Jiang X, Ellabaan MMH, Charusanti P, Munck C, Blin 
K, Tong Y, Weber T, Sommer MOA, Lee SY. 
Dissemination of antibiotic resistance genes from anti
biotic producers to pathogens. Nat Commun. 2017.8 
(1):15784. doi:10.1038/ncomms15784.

17. Gumpert H, Kubicek-Sutherland JZ, Porse A, Karami N, 
Munck C, Linkevicius M, Adlerberth I, Wold AE, 
Andersson DI, Sommer MOA. Transfer and persistence 
of a multi-drug resistance plasmid in situ of the infant gut 
microbiota in the absence of antibiotic treatment. Front 
Microbiol. 2017.8:1852. doi:10.3389/fmicb.2017.01852.

18. Porse A, Gumpert H, Kubicek-Sutherland JZ, Karami N, 
Adlerberth I, Wold AE, Andersson DI, Sommer MOA. 
Genome dynamics of Escherichia coli during antibiotic treat
ment: transfer, loss, and persistence of genetic elements in situ 
of the infant gut. Front Cell Infect Microbiol. 2017.5:126. 
doi:10.3389/fcimb.2017.00126.

19. Botelho J, Schulenburg H. The role of integrative and con
jugative elements in antibiotic resistance evolution. Trends 
Microbiol. 2020.29(1):8–18. doi:10.1016/j.tim.2020.05.011.

20. Brüssow H, Hendrix RW. Phage genomics: small is beautiful. 
Cell. 2002.108(1):13–16. doi:10.1016/S0092-8674(01)00637-7.

21. Asadulghani M, Ogura Y, Ooka T, Itoh T, Sawaguchi A, 
Iguchi A, Nakayama K, Hayashi T. The defective prophage 
pool of Escherichia coli O157: prophage-prophage interac
tions potentiate horizontal transfer of virulence determinants. 
PLoS Pathog. 2009.8(5):e1000408. doi:10.1371/journal. 
ppat.1000408.

22. Modi SR, Lee HH, Spina CS, Collins JJ. Antibiotic 
treatment expands the resistance reservoir and 

ecological network of the phage metagenome. Nature. 
2013.499(7457):219–222. doi:10.1038/nature12212.

23. Enault F, Briet A, Bouteille L, Roux S, Sullivan MB, 
Petit MA. Phages rarely encode antibiotic resistance 
genes: a cautionary tale for virome analyses. Isme J. 
2017.11(1):237–247. doi:10.1038/ismej.2016.90.

24. Zaura E, Brandt BW, Teixeira de Mattos MJ, Buijs MJ, 
Caspers MP, Rashid MU, Weintraub A, Nord CE, Savell 
A, Hu Y, et al. Same exposure but two radically different 
responses to antibiotics: resilience of the salivary micro
biome versus long-term microbial shifts in feces. MBio. 
2015.375(6):e01693–15. doi:10.1128/mBio.01693-15.

25. Emiola A, Oh J. High throughput in situ metagenomic 
measurement of bacterial replication at ultra-low 
sequencing coverage. Nat Commun. 2018.152(1):4956. 
doi:10.1038/s41467-018-07240-8.

26. Wattam AR, Abraham D, Dalay O, Disz TL, Driscoll T, 
Gabbard JL, Gillespie JJ, Gough R, Hix D, Kenyon R, et al. 
PATRIC, the bacterial bioinformatics database and analysis 
resource. Nucleic Acids Res. 2014.42:D581–91. doi:10.1093/ 
nar/gkt1099.

27. Das AT, Tenenbaum L, Berkhout B. Tet-on systems 
for doxycycline-inducible gene expression. Curr 
Gene Ther. 2016.16(3):156–167. doi:10.2174/ 
1566523216666160524144041.

28. Nayfach S, Rodriguez-Mueller B, Garud N, Pollard KS. 
An integrated metagenomics pipeline for strain profil
ing reveals novel patterns of bacterial transmission and 
biogeography. Genome Res. 2016.26:1612–1625.

29. Wu Y-W, Simmons BA, Singer SW. MaxBin 2.0: an 
automated binning algorithm to recover genomes from 
multiple metagenomic datasets. Bioinformatics. 2016.32 
(4):605–607. doi:10.1093/bioinformatics/btv638.

30. Krawczyk PS, Lipinski L, Dziembowski A. PlasFlow: 
predicting plasmid sequences in metagenomic data 
using genome signatures. Nucleic Acids Res. 2018.499 
(6):e35. doi:10.1093/nar/gkx1321.

31. Baheti S, Tang X, O'Brien DR, Chia N, Roberts LR, Nelson H, 
Boughey JC, Wang L, Goetz MP, Kocher JA, et al. HGT-ID: 
an efficient and sensitive workflow to detect human-viral 
insertion sites using next-generation sequencing data. BMC 
Bioinform. 2018.11(1):271. doi:10.1186/s12859-018-2260-9.

32. Trappe K, Marschall T, Renard BY. Detecting horizon
tal gene transfer by mapping sequencing reads across 
species boundaries. Bioinformatics. 2016.32(17):i595– 
i604. doi:10.1093/bioinformatics/btw423.

33. Li J, Rettedal EA, Van Der Helm E, Ellabaan M, 
Panagiotou G, Sommer MOA. Antibiotic treatment 
drives the diversification of the human gut resistome. 
Genomics Proteomics Bioinformatics. 2019.6(1):39–51. 
doi:10.1016/j.gpb.2018.12.003.

34. Colomer-Lluch M, Jofre J, Muniesa M. Antibiotic resis
tance genes in the bacteriophage DNA fraction of envir
onmental samples. PLoS One. 2011.6:e17549. 
doi:10.1371/journal.pone.0017549.

35. Kang K, Ni Y, Li J, Imamovic L, Sarkar C, Kobler MD, 
Heshiki Y, Zheng T, Kumari S, Wong JCY, et al. The 

e1900995-18 K. KANG ET AL.

https://doi.org/10.1016/j.watres.2016.03.006
https://doi.org/10.1371/journal.pone.0080201
https://doi.org/10.1126/science.1176950
https://doi.org/10.1371/journal.pone.0009836
https://doi.org/10.1126/science.aaj2191
https://doi.org/10.1038/s41467-019-08529-y
https://doi.org/10.1038/ncomms15784
https://doi.org/10.3389/fmicb.2017.01852
https://doi.org/10.3389/fcimb.2017.00126
https://doi.org/10.1016/j.tim.2020.05.011
https://doi.org/10.1016/S0092-8674(01)00637-7
https://doi.org/10.1371/journal.ppat.1000408
https://doi.org/10.1371/journal.ppat.1000408
https://doi.org/10.1038/nature12212
https://doi.org/10.1038/ismej.2016.90
https://doi.org/10.1128/mBio.01693-15
https://doi.org/10.1038/s41467-018-07240-8
https://doi.org/10.1093/nar/gkt1099
https://doi.org/10.1093/nar/gkt1099
https://doi.org/10.2174/1566523216666160524144041
https://doi.org/10.2174/1566523216666160524144041
https://doi.org/10.1093/bioinformatics/btv638
https://doi.org/10.1093/nar/gkx1321
https://doi.org/10.1186/s12859-018-2260-9
https://doi.org/10.1093/bioinformatics/btw423
https://doi.org/10.1016/j.gpb.2018.12.003
https://doi.org/10.1371/journal.pone.0017549


environmental exposures and inner- and intercity traffic 
flows of the metro system may contribute to the skin 
microbiome and resistome. Cell Rep. 2018.17(5):1190– 
202 e5. doi:10.1016/j.celrep.2018.06.109.

36. Schmieder R, Lim YW, Edwards R. Identification and 
removal of ribosomal RNA sequences from metatran 
scriptomes. Bioinformatics. 2012.28(3):433–435. 
doi:10.1093/bioinformatics/btr669.

37. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, 
Yarza P, Peplies J, Glockner FO. The SILVA ribosomal 
RNA gene database project: improved data processing 
and web-based tools. Nucleic Acids Res. 2013.41:D590– 
6. doi:10.1093/nar/gks1219.

38. Li H, Durbin R. Fast and accurate long-read alignment 
with Burrows-Wheeler transform. Bioinformatics. 
2010.26(5):589–595. doi:10.1093/bioinformatics/btp698.

39. Roux S, Faubladier M, Mahul A, Paulhe N, Bernard A, 
Debroas D, Enault F. Metavir: a web server dedicated to 
virome analysis. Bioinformatics. 2011.27(21):3074–3075. 
doi:10.1093/bioinformatics/btr519.

40. Peng Y, Leung HC, Yiu SM, Chin FY. IDBA-UD: a de novo 
assembler for single-cell and metagenomic sequencing data 
with highly uneven depth. Bioinformatics. 2012.28 
(11):1420–1428. doi:10.1093/bioinformatics/bts174.

41. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, 
Homer N, Marth G, Abecasis G, Durbin R, Proc GPD. 
The sequence alignment/map format and SAMtools. 
Bioinformatics. 2009.25(16):2078–2079. doi:10.1093/ 
bioinformatics/btp352.

42. Zheng T, Li J, Ni Y, Kang K, Misiakou MA, Imamovic L, 
Chow BKC, Rode AA, Bytzer P, Sommer M, et al. Mining, 
analyzing, and integrating viral signals from metagenomic data. 
Microbiome. 2019.7(1):42. doi:10.1186/s40168-019-0657-y.

43. Zhu W, Lomsadze A, Borodovsky M. Ab initio gene 
identification in metagenomic sequences. Nucleic Acids 
Res. 2010.25(12):e132. doi:10.1093/nar/gkq275.

44. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 
Basic local alignment search tool. J Mol Biol. 1990.215 
(3):403–410. doi:10.1016/S0022-2836(05)80360-2.

45. Kanehisa M, Goto S, Goto S, Goto S. KEGG: kyoto 
encyclopedia of genes and genomes. Nucleic Acids 
Res. 2000.28(1):27–30. doi:10.1093/nar/28.1.27.

46. Buchfink B, Xie C, Huson DH. Fast and sensitive pro
tein alignment using DIAMOND. Nat Methods. 
2015.12(1):59–60. doi:10.1038/nmeth.3176.

47. Besemer J, Lomsadze A, Borodovsky M. GeneMarkS: a 
self-training method for prediction of gene starts in 
microbial genomes. Implications for Finding Sequence 
Motifs in Regulatory Regions Nucleic Acids Research. 
2001.29:2607–2618.

48. Finn RD, Bateman A, Clements J, Coggill P, Eberhardt 
RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry 
J, et al. Pfam: the protein families database. Nucleic 
Acids Res. 2014.42:D222–30. doi:10.1093/nar/gkt1223.

49. Kristensen DM, Waller AS, Yamada T, Bork P, 
Mushegian AR, Koonin EV. Orthologous gene clusters 
and taxon signature genes for viruses of prokaryotes. 
J Bacteriol. 2013.215(5):403–410. doi:10.1128/JB.01801- 
12.

50. McArthur AG, Waglechner N, Nizam F, Yan A, Azad 
MA, Baylay AJ, Bhullar K, Canova MJ, De Pascale G, 
Ejim L, et al. The comprehensive antibiotic resistance 
database. Antimicrob Agents Chemother. 2013.195 
(7):941–950. doi:10.1128/AAC.00419-13.

51. Pruitt KD, Brown GR, Hiatt SM, Thibaud-Nissen F, 
Astashyn A, Ermolaeva O, Farrell CM, Hart J, 
Landrum MJ, McGarvey KM, et al. RefSeq: an update 
on mammalian reference sequences. Nucleic Acids Res. 
2014.42:D756–63. doi:10.1093/nar/gkt1114.

52. Roux S, Enault F, Hurwitz BL, Sullivan MB. VirSorter: 
mining viral signal from microbial genomic data. PeerJ. 
2015.3:e985. doi:10.7717/peerj.985.

53. Ren J, Ahlgren NA, Lu YY, Fuhrman JA, Sun F. VirFinder: 
a novel k-mer based tool for identifying viral sequences from 
assembled metagenomic data. Microbiome. 2017.5(1):69. 
doi:10.1186/s40168-017-0283-5.

54. Siguier P, Perochon J, Lestrade L, Mahillon J, 
Chandler M. ISfinder: the reference centre for bacterial 
insertion sequences. Nucleic Acids Res. 2006.34(90001): 
D32–6. doi:10.1093/nar/gkj014.

55. Truong DT, Franzosa EA, Tickle TL, Scholz M, 
Weingart G, Pasolli E, Tett A, Huttenhower C, Segata 
N. MetaPhlAn2 for enhanced metagenomic taxonomic 
profiling. Nat Methods. 2015.12(10):902–903. 
doi:10.1038/nmeth.3589.

56. Dixon P. VEGAN, a package of R functions for com
munity ecology. J Veg Sci. 2003.14(6):927–930. 
doi:10.1111/j.1654-1103.2003.tb02228.x.

57. Ondov BD, Treangen TJ, Melsted P, Mallonee AB, 
Bergman NH, Koren S, Phillippy AM. Mash: fast gen
ome and metagenome distance estimation using 
MinHash. Genome Biol. 2016.17(1):132. doi:10.1186/ 
s13059-016-0997-x.

58. Ihaka R, Gentleman R. R: a language for data analysis 
and graphics. J Comput Graph Statist. 1996;5:299–314.

59. Gómez-Rubio V. ggplot2-elegant graphics for data ana
lysis. J Stat Softw. 2017;77:1–3.

60. Murrell P. The grid graphics package. R News. 
2002.2:14–19.

61. Auguie B, Antonov A. gridExtra: miscellaneous functions for 
“grid” graphics. R Package Version. 2017.2:602.

62. Neuwirth E RColorBrewer: colorBrewer palettes. 
R package version 1.1-2. The R Foundation 2014.

63. Murdoch D. Ellipse: functions for drawing ellipses and 
ellipse-like confidence regions. R package version 0.3-8. 2007. 
Available at: https://cran.r-project.org/package=ellipse

64. Kolde R, Kolde MR. Package ‘pheatmap’. R Package. 
2015.1:790.

GUT MICROBES e1900995-19

https://doi.org/10.1016/j.celrep.2018.06.109
https://doi.org/10.1093/bioinformatics/btr669
https://doi.org/10.1093/nar/gks1219
https://doi.org/10.1093/bioinformatics/btp698
https://doi.org/10.1093/bioinformatics/btr519
https://doi.org/10.1093/bioinformatics/bts174
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1186/s40168-019-0657-y
https://doi.org/10.1093/nar/gkq275
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.1038/nmeth.3176
https://doi.org/10.1093/nar/gkt1223
https://doi.org/10.1128/JB.01801-12
https://doi.org/10.1128/JB.01801-12
https://doi.org/10.1128/AAC.00419-13
https://doi.org/10.1093/nar/gkt1114
https://doi.org/10.7717/peerj.985
https://doi.org/10.1186/s40168-017-0283-5
https://doi.org/10.1093/nar/gkj014
https://doi.org/10.1038/nmeth.3589
https://doi.org/10.1111/j.1654-1103.2003.tb02228.x
https://doi.org/10.1186/s13059-016-0997-x
https://doi.org/10.1186/s13059-016-0997-x

	Abstract
	Introduction
	Results
	Microbial community structure shifted during antibiotic treatment and recovered after treatment
	Gram-negative species and carriers ofantibiotic-specific resistance gene homologs (AsRGs) proliferated during treatment
	AsRGs have high transcriptional activity during antibiotic treatment
	Virome-encoded ARGs expanded after antibiotic treatment
	AsRGs are frequently found on mobile genetic elements
	Mobile AsRGs expanded the resistance reservoir via potential HGT events

	Discussion
	Materials and methods
	Study design
	Sampling
	DNA extraction
	DNA purification
	DNA library preparation and sequencing
	RNA extraction
	RNA library preparation and sequencing
	Phage DNA extraction
	Control for bacterial contamination in phage DNA extractions
	Phage library preparation and sequencing
	Nucleic acid extraction and sequencing control
	Sequencing data quality control
	rRNA removal from RNA sequencing clean data
	In silico estimation of bacterial contamination in virome
	De novo assembly
	Updated phage orthologous group (uPOG) database

	Open reading frame (ORF) prediction and annotation
	Antibiotic resistance gene homolog (ARG) annotation
	Antibiotic-specific resistance gene homolog (AsRG) annotation
	Calculation of transcriptional activity
	Taxonomic assignment of phage contigs
	Phage contig verification by VirSorter and VirFinder
	Phage-like contig identification in metagenomes
	Phage contig filtration
	Plasmid contig annotation
	Transposable element annotation
	Identification of mobile contigs and mobile AsRGs
	Species-specific marker gene annotation
	Contig binning and contig-species assignment
	HGT-supporting read pair extraction
	Metagenome taxonomic assignment
	Community diversity and dissimilarity
	Categorization of special species
	Growth rate index (GRiD) calculation
	Gram-positive and gram-negative species
	Statistics and data visualization

	Declarations
	Ethics approval and consent to participate

	Consent for publication
	Availability of data and material
	Competing interests
	Author’s contributions
	Acknowledgments
	Funding
	ORCID
	References

