. ~ ~ ada as a de e de fac ~ ass ca ed (c ~ s e^3 ss (Da a B, e^a , i b s ed da a, 2016); e a , ibs , ssids . Iccis, eecaass fc / da ea ab

RUMANA N. HUSSAIN, MD¹ HELEN KALIRAI, BSC, PHD² CARL GROENEWALD, MD¹ ANDRZEJ KACPEREK, PHD³ R. DOUGLAS ERRINGTON, BSC, FRCR³ SARAH ELLEN COUPLAND, MBBS, PhD² HEINRICH HEIMANN, MD, PHD¹ BERTIL DAMATO, MD, PHD^{1,4}

¹Liverpool Ocular Oncology Service, St Paul's Eye Unit, Royal Liverpool University Hospital, Liverpool, UK; ²Liverpool Ocular Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, UK; ³Department of Clinical Oncology, Clatterbridge Cancer Center, Bebington, Wirral, UK; ⁴Ocular Oncology Service, Departments of Ophthalmology and Radiation Oncology, University of California, San Francisco, California

Faca Dsc si res: Tea sae rear re rerest a arer as dsossed s ar ce.

 $\begin{array}{ccc} A_{1} & \ & C & \ & f & b_{1} & s \\ C & ce_{1} & a & des & : H & ssa , Ka \ & a, C_{1}, a & d, He_{1}a & , Da_{1}a \\ \end{array}$ A a s s a d e rea : Hissa, Kara, C , a d, He a, Da a

Da'ac ec : Hssa, Ka a, Greea, Kac ere, Err ,Ci_ad, He_a, Da_a

Oba edfi d¹: N₁ a¹, cabe O e a ros, s b : H ssa, Ka a, G e e a, Kac e e, Err, C, a d, He a , Da a

C mes, de ce:

Sava E. C1. a d, MBBS, P D, De $a_{f_1} e_f f P a_{f_2}$, M eq av a d C ca Ca ce Med c e, U es f L ez , 3 d F v A e B d , 6 Wes, L ez L78TX, UK. $E_{f_1} a : s.e.c_1$ a d@ e/ .acı .

References

- 1. Da a BE, E $e_1 e_2 A$, Ta a AFG, C \downarrow a d SE. B₁ a s s f \leq si \leq a afe \leq rea e f c \geq da e a a. Prog Retin Eye Res. 2011;30:285-295.
- 2. Na a P, C e V, C , a d SE, e a U ea e a Na a G de es *Eur J Cancer*. 2015;51:2404-2412. a UK
- 3. C i, a d SE, Ka a H, H V, e a. C c $da_1 c + s = e^3$ s_1 , s_2 , a_2 ed c_2 , da_2 e a_1 , a_2 , b_2 , s_3 , a_4 e a_1 , b_2 , s_3 , a_4 , b_3 , b_4 , b_4, b_4 , b_4, b_4 , b_4 , b_4, b_4, b_4 , b_4, b_4 , b **1**450.
- 4. Wac er a e W, Tar a L, Ma er C, e a. Ge e c a a s s f i ea e a a b ara c a a e e c brd a bef re a d af er rad era . Spektrum Augenheilkd. 2013;27: 286-291.
- 5. D 15. M, K & WG, a D e SG, e a. Rad a rea e affects c r s e est i ea e a a. Invest Ophthalmol Vis Sci. 2015;56:5956-5964.

Adjuvant Dendritic Cell m Vaccination in High-Risk Uveal Melanoma

de e e e e e a (2-5 eas). If e a a c dsease s rese, e s s s ds a a 1-, ea/ OS /a e f 10%, 40%. G //e , , effec es/see c $r_{rea} = c_{1} r_{rea}$ OS s a a ab e f r_{ra} e s r_{ra} e s

Or searce r_1 ad r_2 $es a e e f <math>r_1$ eds e e a, r_5 $e c - r_1$ eds e c a, r_5 $e c - r_1$ eds r_2 $e c - r_2$ $e - r_3$ $e - r_4$ $e - r_5$ $e - r_5$ e - ri i e ca ac_{rif}ação e a e a respectic T ces, a d_ris a est aber d ce a $r_1 + r_1 = r_2$ so. T er $r_3 = r_1 + r_2$ es 100 a d $r_1 + r_2$ i e r_2 so. T er $r_3 = r_3$ es 100 a d $r_1 + r_2$ so. T er $r_3 = r_3$ a ers q a ers ea a, a eb e r_3 so d s f r_1 a ers q a ers ea a, a eb e r_3 so d a UM r $r_1 + r_2$ ce s a d r s c s r r e a $r_1 + r_2$ e f r_1 i r_3 ea. UM. We see, s ed a DC acc a s feas be easa c UM, a d safe, c cers ese de eced. Figer-re, DC acc a s ed e e a e a ce e sis a d a beass caed er a a ea e OS easa c UM. De dr c ce acc a a a ea e c ce deffec e ad a see becase fight $\left[\begin{array}{c} \hat{f} \\ \hat{f} \\ f \end{array} \right]$ b de estac a esta a ere de

T even e_{1} , e_{2} , e_{3} , e_{4} , e_{5} , e_{7} , $e_{$ a a c e a e (HLA)-A*02:01. s e , e a s ce ca ca e < 12 s, a d a e 18 75. eas. Pa e s ds a e a as ce e c ded. Pa e s cece ed a s, c e de ed DC a sfeced RNA e c d e e i s a e s 100 a d s s as e acc d a s c e e f 3 b ee cade a a d s a e i s acc a s. I e abse ce f ds ease co ce ce, a e s cece ed a a f f 2 a e a ce c c s a 6 f e e s cece ed a a f f 2 a e a ce c c s a 6 f e e s cece ed a a f f 2 a e a ce c c s a 6 f e e s cece ed a a f f 2 a e a ce c c s a 6 f e e s cece ed a a f f 2 a e a ce c c s a 6 f e e s cece ed a a f f 2 a e a ce c c s a 6 f e e s cece ed a f a f f e a s a e s (NCT00929019). Beca se f acc a cass, a cased b e case f e e c de a e a da s s, HLA core c, a d e a_{f} $f_{f} e_{f'+}$, de a e a d a s s, HLA $a_{f'}c_{f'}$, a d e crease fe e c ser real es refer st ea a ab s f_{1} , f_{2} , f_{3} , e_{1} , e_{2} , e_{3} , e_{4} , e_{5} , e_{1} , e_{2} , e_{3} , e_{2} , e_{3} , e_{2} , e_{3} , e_{3} , e_{2} , e_{3} , e_{2} , e_{3} , e_{2} , e_{3} , e_{2} , e_{3} , eacc a a d e-e c s de-e de a ab e; 18, a e s c e e d a 3 c c es f, acc a s. Base e c a ace-s, c s a-es Tab e 1 $f^{a}se_{f}fi - es_{f}s = 91\% f_{a}e_{f}s a dex_{f}e_{a}a_{f}e_{s}e_{f}se_{f}e_{c}a_{f}e_{s}N$ $real e_1$ -realed rade 3 rainst 4 c_1 as by e_2 ed.

Figure 1. Survival in correlation with the presence of tumor antigen-speci c T cells after adjuvant dendritic cell (DC) vaccination. Kaplan-Meier curves of disease-free survival (DFS) (A) and overall survival (OS) (B) for patients with high-risk uveal melanoma (UM) who received adjuvant DC vaccination after treatment of the primary tumor according to the presence (Tc+; n = 17; solid black line) or absence (Tc-; n = 6; dashed grey line) of tumor antigen-speci c T cells in skin-test in Itrating lymphocytes. Survival was calculated from the treatment of the primary tumor. Statistical signi cance was determined by a log-rank test.

e e ca, ac r ar e.A aerspereds eda e e c a , a c \sim a e A , a e s e ed a ce a \sim s e e e e c a , d ca a e e acc e d ced de \sim e e c a , d ca a e e acc e d ced de \sim e e c ca , d ca a e e a e \sim s e c fic T ce s o e e e f fira \sim c c s s e e c \sim e a e d e c ca i c e a e s e e e f ed af e e a c a c c e, a d e \sim s e c e a d f c a fir \sim s e c fic T ce s d ced b DC acc a e e a a e s (74%), de s \sim a e effec e es ere se 17 a e s (74%), de s ra e effec e ess $f_1 = e_1$, $e_1 = e_1$, $e_1 = e_1$, $e_2 = e_1$, $e_1 = e_1$, $e_2 = e_2$, $e_1 = e_2$, $e_2 = e_2$, $e_1 = e_2$, $e_2 = e_2$, $e_1 = e_2$, $e_2 = e_2$, e_2 , $e_2 = e_2$, e_2 rease a d 14, a e s (61%) de e , ed e $a_{r}a$ c ds ease at e DC, acc a , f 12, a e s a e d ed (52%). T e e d a ds ease-free si \times a (DFS) as 34.5 s (95% c fide ce ex a, 27.2–41.8), a 3- ea DFS a e f 47%. T e ed a (Tab e 1, a a ab e a ... a ... a. ...). I _ a e s (1 - 5)s. ec fic T ce s afer DC . acc a (1 - 6) e d a DFS a 51.9 est s 18.8 s _ a e s (1 - 6) e d a DFS a 51.9 est s 18.8 s _ a e s (1 - 6) e c 1 d deec (1 - 5) ec fic T ce s (P = 0.024) (F 1A). Med a OS as 45.0

s, ca da a acc = 1, e = 3, ca = 0 da a f = 6DC- acc a ed a e s (79%) c = 1 ared e = 1 e = 1 e^{-1} e^{-1}

-rs UM).^{2,4} I $e \approx$, HLA-A*02:01, $e \approx e$ (**~**60% cidbeac fid fac, b, crea sir as s a arec fia es (UM.⁵ Of cise, a

ad a_1 , a_2 , DC, $acc a_1$, s_1 , d be by a ed f_{r_1} , r_s , eq. e va d ed c ca vas.

KALIJN F. BOL, MD^{1,2} THOMAS VAN DEN BOSCH, MD, PHD⁷ GERTY SCHREIBELT, PHD¹ HANNEKE W. MENSINK, MD, PHD^{7,8} JAN E.E. KEUNEN, MD, PHD³ Emine Kili, MD, PhD⁹ Wouter J^{C} . Japing, MD^{10} KASPAR W. GEUL, MD¹¹ HARM WESTDORP, MD^{1,2} STEVE BOUDEWIJNS, MD^{1,2} SANDRA A.J. CROOCKEWIT, MD, PHD⁴ MICHELLE M. VAN ROSSUM, MD, PHD⁵ ANNA L. DE GOEDE, MD, PHD⁶ NICOLE C. NAUS, MD, PHD⁹ WINETTE T.A. VAN DER GRAAF, MD, PHD^{2,12} WINALD R. GERRITSEN, MD, PHD² Annelies de Klein, PhD⁸ CORNELIS J.A. PUNT, MD, PHD¹³ CARL G. FIGDOR, PHD¹ VICTORIA M. COHEN, MD, PHD¹⁴ DION PARIDAENS, MD, PHD^{7,9} I. JOLANDA M. DE VRIES, PHD^{1,2}

¹Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands; ²Department of Medical Oncology, Radboud University Medical Centre, Nijmegen, The Netherlands; ³Department of Ophthalmology, Radboud University

Medical Centre, Nijmegen, The Netherlands; ⁴Department of Hematology, Radboud University Medical Centre, Nijmegen, The Netherlands; ⁵Department of Dermatology, Radboud University Medical Centre, Nijmegen, The Netherlands; ⁶Department of Pharmacy, Radboud University Medical Centre, Niimegen, The Netherlands; ⁷Department of Ocular Oncology, Rotterdam Eye Hospital, Rotterdam, The Netherlands; ⁸Department of Clinical Genetics, Erasmus Medical Centre, Rotterdam, The Netherlands; ⁹Department of Ophthalmology, Erasmus Medical Centre, Rotterdam, The Netherlands; ¹⁰Department of Ophthalmology, University Medical Center Groningen, Groningen, The Netherlands; ¹¹Department of Internal Medicine, Sint Franciscus Hospital, Rotterdam, The Netherlands; ¹²Department of Medical Oncology, The Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, London, United Kingdom; ¹³Department of Medical Oncology, Academic Medical Center, Amsterdam, The Netherlands; ¹⁴Department of Ophthalmology, Moor elds Eye Hospital and St. Bartholomew's Hospital, London, United Kingdom

Faca Dsc size(s): Tea₍₁(s) ae (r, r) (r, r)e-ca e-os, a ae- as dsossed sacce. J.M.dV.: G-a – Ne e- ads O- as a f - Sce fic Researc (NWO)-V c (918.14.655). Tes, s - r f d - a a ac ia a (NWO)-V C (918.14.053). I es s \neq i d \neq a a a a a a a \neq e e des \neq c d c f s \neq seac . S. \neq ed b \neq a s f \neq e D c Ca ce S ce (KUN2010-4722, KUN2009-4402), T e Ne e \neq a ds O \neq a a f \neq Sce fic Reseac (95100106), e N e es Offes ef Te e Ka e, e C b ed O a c Reseac R e da F da , a d e S c Weesca e O de e e O e e i s. C.G.F.: Rece ed e NWO S a a a d a d a E \neq ea Reseac C = c A d a ced \neq a (ERC-2010-AdG-269019-PATHFINDER). T dB G S a d HWM c \neq b ed e a

T. dB., G.S., a d H.W.M. c $\int b de a$.

C e, Par daes, de Vres A a ss a d $e_{7} \neq a_{1}$: B , a de B sc , Sc e_{1} be, Me s , de K e , B $_{1}$, F d $_{7}$, Pa $_{7}$ dae s, de V $_{7}$ es Oba edfi d : N a cabe O e a \sim s b $_{f}$: B , a de B s c , S c \sim e be , Me s , de K e , R $_{f}$, F d \sim , Pa \sim dae s , de V \sim s

C mes, de ce: I. J a da M. de V ϵ s, P D, De $a_{\hat{i}} e_{\hat{i}} f T_{\hat{i}} \neq I_{\hat{i}}$ Radb $\mid dI_{s_1} e^{f} \wedge M = a \wedge L fe Sc'e ces, POB' = 9101, 6500 HB$ N e e , T e Ne e a ds. E a : J a da. de V \sim @ adb i d c. .

References

- 1. B KF, Me s HW, Aar e EH, e a. L si < a afe de d< c ce acc a easta c i ea ea a a e s. Am J Ophthalmol. 2014;158: 939-947 939-947.
- 2. Pros c er G, B r fe d N, H r c e H, e a . Pr s c ca**s f s 3 i** ea **e** a **a** *Lancet*. 1996;347: 1222-1225.

- 1222-1225.
 3. B K, Aare EH, 'H FEM, e a. Farabe era size a state III ea a a e s aferadi a de dre ce acca. Oncoimmunology. 2015;5:e1057673.
 4. W e VA, C a bes JD, C receptor PD, e a. C rea frequencies a concert 1998;83:354-359.
 5. Maa W, Haas GW, C aas FH, e a. HLA C as I a d II e rea ea a: rea correct a dreater a correct a dreat