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Abstract
Purpose  Observational studies indicate a positive association between circulating 25-hydroxyvitamin D (25OHD) and 
testosterone (T) concentrations. Because low 25OHD concentrations and T deficiency are considered to be a generalized 
phenomenon in patients with advanced heart failure (HF), we aimed to investigate whether vitamin D supplementation has 
beneficial effects on T indices in these patients.
Methods  In a pre-specified secondary analysis of the EVITA (effect of vitamin D on mortality in heart failure) randomized 
controlled trial, we analyzed in male subjects with 25OHD concentrations < 75 nmol/L the effect of a daily vitamin D3 sup-
plement of 4000 IU for 3 years (n = 71) vs. placebo (n = 62) on total T (TT), sex hormone-binding globulin (SHBG), free T 
(fT), and bioactive T (BAT). We assessed changes from baseline until study termination and between-group differences at 
study termination.
Results  25OHD increased in the placebo group from 36.6 nmol/L by 9.2 nmol/L (95% CI 3.2–15.1 nmol/L; P = 0.003) and 
in the vitamin D group from 36.5 nmol/L by 63.9 nmol/L (95% CI 52.6–75.3 nmol/L; P < 0.001), with a significant between-
group difference at study termination (P < 0.001). TT and SHBG concentrations did not change significantly, neither in the 
placebo group nor in the vitamin D group (P = 0.845–0.082), but concentrations of fT and BAT declined significantly in 
both groups (P = 0.025–0.008). At study termination, there were no between-group differences in TT (P = 0.612), SHBG 
(P = 0.393), fT (P = 0.861), or BAT (P = 0.960).
Conclusions  In male patients with advanced HF and low 25OHD concentrations, a daily vitamin D3 supplement of 4000 IU 
for 3 years did not prevent the decline in testosterone indices.

Keywords  Vitamin D · Testosterone · Free testosterone · Bioactive testosterone · Sex hormone · Heart failure · Randomized 
controlled trial

Introduction

Testosterone (T) is the principal male sex hormone. As 
men age, T concentrations typically fall [1]. T deficiency 
is considered to be a generalized phenomenon in patients 
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with advanced heart failure (HF) that may also be involved 
in the pathophysiology of the disease [2]. Briefly, typical 
symptoms of advanced HF such as reduced muscle mass, 
abnormal energy handling, fatigue, dyspnea, and cachexia 
are attributed, at least in part, to T deficiency [2].

Observational studies indicate a positive relation between 
circulating 25-hydroxyvitamin D (25OHD) concentrations, 
the generally accepted indicator of vitamin D status, and 
T concentrations [3–7]. In line with these findings, a pro-
spective, non-randomized, non-controlled trial in middle-
aged men showed that vitamin D2 bolus administration was 
associated with an improvement in T concentrations [8]. 
Moreover, in a post hoc analysis of a randomized controlled 
trial (RCT) in overweight individuals [9], male subjects 
assigned to daily vitamin D3 supplementation with 3332 IU 
showed a significant increase in concentrations of total T 
(TT), free T (fT) and bioactive T (BAT), whereas the afore-
mentioned parameters did not change significantly in male 
patients assigned to placebo. However, no beneficial vitamin 
D effect on T indices was reported by two RCTs in healthy 
men [10, 11].

Low vitamin D status is a frequent finding in patients with 
HF [12]. The vast majority of patients with HF have 25OHD 
concentrations < 75 nmol/L [13–16] and the prevalence of 
deficient concentrations (i.e. < 30 nmol/L) varies between 
28 and 66.7% [15, 16].

We, therefore, aimed to investigate in a pre-specified 
secondary analysis of the EVITA (Effect of vitamin D on 
mortality in heart failure) trial whether a daily vitamin D3 
supplement of 4000 IU for 3 years is able to improve male 
sex hormone concentrations in patients with advanced HF 
and 25OHD concentrations < 75 nmol/L.

Methods

Study design and participants

The present investigation is a pre-specified secondary 
analysis of the EVITA trial. EVITA is a single-center, ran-
domized, placebo-controlled, clinical trial performed at 
the Clinic for Thoracic and Cardiovascular Surgery of the 
Heart and Diabetes Center North Rhine Westphalia, Bad 
Oeynhausen, Germany. Main study results have already been 
published elsewhere [17, 18]. Briefly, between November 
2010 and July 2013, 400 patients with HF (332 men and 
68 women) were recruited. All patients were ambulatory 
and regularly seen at our outpatient clinic. Eligible study 
participants were adults aged ≥ 18 to 79 years with conges-
tive HF, New York Heart Association functional class ≥ II, 
and circulating 25OHD concentrations < 75 nmol/L. Par-
ticipants were randomly allocated to receive 4000 IU (100 
µg) cholecalciferol per day as oily drops (Vigantol® Oel, 

provider: Merck KGaA, Darmstadt, Germany) or a matching 
placebo (Miglyol Oel, provider: Merck KGaA, Darmstadt, 
Germany) for 3 years. The daily vitamin D dose was iden-
tical with the upper tolerable intake level of the Institute 
of Medicine [19] and the European Food Safety Authority 
[20]. During the study, participants remained on guideline-
recommended medications. Patient adherence was assessed 
by measuring in-study concentrations of circulating 25OHD 
and comparing results with expected values as calculated by 
a formula, based on vitamin D dose, body weight, age, and 
initial 25OHD concentration [21]. For the present analysis, 
only male patients were considered. Of the 332 male partici-
pants, 158 completed the study (Fig. 1), while 174 patients 
died, dropped out, or were lost to follow-up. Additional 25 
patients had to be excluded because no sex hormone meas-
urements were possible, due to insufficient sample volume. 
Finally, data on relevant parameters for this secondary analy-
sis were available in 133 patients (vitamin D group, n = 71; 
placebo group, n = 62). The study was registered at EudraCT 
as 010-020793-42 and clinicaltrials.gov as NCT01326650. 
All study participants gave written informed consent to the 
study procedures before randomization. The study protocol 
was approved by the ethics committee of the Medical Coun-
cil Westphalia-Lippe, Germany (No. 2010-052-fA).

Data assessment

The electronic records of the patients were used to assess 
baseline characteristics, such as anthropometric data, clini-
cal parameters, and medication use. Fasting venous blood 
samples were collected on study visits between 8 and 11 
a.m. under standardized conditions. Blood samples were 
either measured directly within 4 h of blood collection or 
stored at − 80 °C until analysis. Circulating total 25OHD, 
total 1,25(OH)2D, and intact parathyroid hormone (iPTH) 
concentrations were measured by the autoanalyzer Liai-
son (DiaSorin, Stillwater, MN, USA). The 25OHD test 
has equimolar cross-reactivity with 25OHD2 (104.5%) 
and 25OHD3 (100.7%). The measuring range for 25OHD 
lies between 10 and 375 nmol/L. Values < 10 nmol/L were 
considered 9.9 nmol/L. The 1,25(OH)2D test has equi-
molar cross-reactivity with 1,25(OH)2D2 (104.0%) and 
1,25(OH)2D3 (100.0%). The limit of 1,25(OH)2D quantita-
tion is 12 pmol/L and we considered values below this limit 
as 11 pmol/L. Albumin, brain natriuretic peptide (BNP), 
calcium, creatinine, TT, and sex hormone-binding globulin 
(SHBG) values were analyzed by the Architect Autoanalyzer 
(Abbott, Wiesbaden, Germany). Estimated glomerular filtra-
tion rate (eGFR) was calculated using the Modification of 
Diet in Renal Disease formula [22]. Measurements of cal-
cium and 25OHD were performed on the day of blood sam-
pling. Inter- and intra-assay coefficients of variation were 6.8 
and 7.0%, respectively. Determinations of the calciotropic 
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hormones iPTH and 1,25[OH]2D, and of TT and SHBG 
were performed in batch analyses.

According to earlier classifications [9], we consid-
ered the reference range for TT as 9.09–55.28 nmol/L for 
males aged 20–49 years and 6.28–26.30 nmol/L for males 
aged ≥ 50 years, and the SHBG reference range for males as 
13–71 nmol/L. BAT (reference range 2.14–13.60 nmol/L) 
and fT (reference range 0.090–0.580 nmol/L) were cal-
culated from TT and SHBG concentrations according to 
Vermeulen et al. [23]. For classifying 25OHD, we used the 
following cut-off values [19, 24, 25]: < 30 nmol/L as defi-
cient, 30–49.9 nmol/L as insufficient, and 50–74.99 nmol/L 
as borderline.

Outcome measures

In the present analysis of the EVITA trial, we assessed 
changes from baseline until study termination in TT, fT, and 
BAT concentrations. Moreover, we assessed between-group 
differences of the aforementioned indices at study termina-
tion, with adjustment for baseline values.

Statistics

Categorical data are presented as numbers and percentages 
of observations. Continuous data are shown as mean and 
standard deviation. Fisher’s exact test, the unpaired t test, 
and the Mann–Whitney U test were used for group com-
parisons at baseline, when appropriate. Change from base-
line data is shown as mean and 95% confidence interval 
(CI). The paired t test and the Wilcoxon test were used to 
test for differences within groups between the baseline and 
3-year follow-up visit, when appropriate. ANCOVA with 
adjustments for baseline values was used to test for differ-
ences in calcium, calciotropic hormones, and sex hormone 
parameters between the patients assigned to vitamin D or 
placebo at the 3-year follow-up visit. We also adjusted for 
those anthropometric/clinical/biochemical parameters that 
at least tended to differ (P < 0.1) between study groups 
at baseline. Skewed variables were normalized by log(e) 
transformation before use in ANCOVA, but all results are 
shown in the original units. We used Spearman’s rank 
correlation coefficient (rs) to assess the interrelationship 

Fig. 1   Flow chart of study 
participants

Randomized
(n=400)

Checked for sex hormone 
measurement (n=332)

Considered for sex hormone 
measurement (n=158)

Vitamin D group (n=71) Placebo group (n=62)

▪ Female sex: (n=68)

▪ Death: (n=67)
▪ Drop-Out: (n=77)
▪ Lost-to Follow-Up (n=30)

Assessed for eligibility
(n=892)

▪ Declined to participate (n=293)
▪ Did not meet inclusion criteria (n=143)
▪ Other reasons (n=56)

Sex hormone measurement 
(n=133)

▪ Insufficient sample volume at baseline 
or follow-up (n=25)
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between biochemical variables. P values < 0.05 were con-
sidered statistically significant.

Given a total number of 133 patients in this two-treat-
ment parallel design study, there is a 90% probability that 
the study will detect a treatment difference in fT at a two-
sided 0.05 significance level if the true difference between 
treatments is 0.051 nmol/L. This is based on the assump-
tion that the standard deviation of fT is 0.090 nmol/L [9]. 
The calculated treatment difference of 0.051 nmol/L would 
be similar to the vitamin D effect in the aforementioned 
study in overweight men [9], indicating an increase in fT 
of 0.045 nmol/L by a daily vitamin D dose of 3332 IU. We 
performed all analyses using IBM SPSS Statistics, version 
23 (IBM Corporation, Armonk, NY, USA).

Results

Baseline data

Baseline characteristics of the study participants are pre-
sented in Table 1 by study group. The presence of advanced 
HF in both study groups is confirmed by their low values of 
left ventricular ejection fraction, and their high values of left 
ventricular end-diastolic diameter and BNP. In the vitamin D 
and placebo groups, 42.3 and 40.3% of patients, respectively, 
had initial circulating 25OHD concentrations < 30 nmol/L. 
Body mass index and medication use were similar in the two 

study groups. However, compared with patients assigned to 
placebo, age was significantly higher in patients assigned 
to vitamin D. Other parameters did not differ significantly 
between groups.

Vitamin D effects on calciotropic hormones and sex 
hormones

Plasma calcium concentrations, calciotropic hormones, 
and sex hormone indices are presented in Table 2. In detail, 
mean 25OHD increased slightly by 9.2 nmol/L in the pla-
cebo group (P = 0.003) and markedly by 63.9 nmol/L in 
the vitamin D group (P < 0.001). Likewise, in the vitamin 
D group plasma calcium and 1,25(OH)2D increased sig-
nificantly (P < 0.001 and P = 0.004, respectively) and iPTH 
decreased significantly (P = 0.005), whereas these param-
eters remained constant in the placebo group (P = 0.574, 
P = 0.397, and P = 0.638, respectively). Overall, the adjusted 
between-group differences at study termination were signifi-
cant for plasma calcium (P = 0.003), 25OHD (P < 0.001), 
and 1,25(OH)2D (P = 0.003), but not for iPTH (P = 0.182). 
The mean vitamin D-induced increase in circulating 25OHD 
of 54.8 nmol/L was in line with the expected increase of 
57.6 nmol/L, as calculated by a recently provided formula 
[21].

Initially, mean concentrations of TT, SHBG, fT, and BAT 
were in the vitamin D and placebo groups in their respective 
reference range. In the vitamin D and placebo groups, 19.7 

Table 1   Baseline characteristics 
of the study groups

GFR glomerular filtration rate, ACE angiotensin converting enzyme, ARB angiotensin II receptor blocker, 
BNP brain natriuretic peptide

Parameter Placebo group (n = 62) Vitamin D group 
(n = 71)

P value

Age (years) 51.1 ± 10.5 55.0 ± 9.9 0.026
Body mass index (kg/m2) 29.5 ± 5.3 29.2 ± 4.6 0.788
Left ventricular ejection fraction (n, %) 29.9 ± 10.5 29.9 ± 8.8 0.957
Left ventricular end-diastolic diameter (mm) 68.3 ± 13.9 67.4 ± 9.2 0.670
Diabetes mellitus (n, %) 21.9 (44) 20.1 (40) 0.099
Estimated GFR (ml/min/1.73 m2) 77.8 ± 25.0 70.4 ± 22.3 0.075
Medications
 Aldosterone-antagonists (n, %) 53 (86) 57 (80) 0.495
 Loop diuretics (n, %) 52 (84) 57 (80) 0.656
 Thiazide diuretics (n, %) 21 (34) 20 (28) 0.573
 Beta-blockers (n ,%) 61 (98) 69 (97) > 0.999
 ACE-inhibitors/ARB-blockers (n, %) 62 (100) 68 (96) 0.248
 Digoxin (n, %) 26 (42) 22 (31) 0.209

Biochemical parameters
 Calcium (mmol/L) 2.38 ± 0.11 2.39 ± 0.13 0.885
 25-Hydroxyvitamin D (nmol/L) 36.6 ± 17.6 36.5 ± 17.9 0.976
 Albumin (mg/dL) 3824 ± 421 3810 ± 434 0.855
 BNP (pg/mL) 511 ± 550 467 ± 940 0.801
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and 16.1%, respectively, had baseline TT values below the 
age-specific reference range. TT declined non-significantly 
between baseline and study termination in the placebo group 
(P = 0.084) and remained constant in the vitamin D group 
(P = 0.845). SHBG concentrations increased non-signifi-
cantly in both groups (P = 0.098 and P = 0.082). There was 
a significant decline in fT concentrations between baseline 
and study termination in the placebo group (P = 0.008) and 
in the vitamin D group (P = 0.012). Likewise, BAT concen-
trations declined significantly between baseline and study 
termination in the placebo group (P = 0.008) and in the vita-
min D group (P = 0.025). At study termination, there were 
no between-group differences in adjusted sex hormone indi-
ces (TT: P = 0.612; SHBG: P = 0.393; fT: P = 0.861; BAT: 
P = 0.960).

Subgroup analyses

Supplemental Table 1 shows the effect of vitamin D sup-
plementation on sex hormone indices in patients with initial 
25OHD concentrations < 30 nmol/L by study group. Even in 
patients with very low vitamin D status at baseline, vitamin 
D supplementation did not influence male sex hormone indi-
ces. Moreover, no significant vitamin D effect was observed 
in the small group of patients with initial testosterone con-
centrations below the age-dependent reference range (Sup-
plemental Table 2).

Correlations

In correlation analyses, we included all samples where meas-
urements of calciotropic hormones and sex hormone indices 
were available at baseline and study termination (n = 266) 
(Table 3). Briefly, there were weak inverse relationships of 
25OHD with fT and BAT, and of 1,25(OH)2D with SHBG, 
whereas 25OHD was positively associated with SHBG. 
iPTH was not correlated with any sex hormone parameter. 
Notably, of the parameters included in the correlation analy-
sis, age showed the strongest (inverse) association with fT 
and BAT. Body mass index was not significantly related to 
fT or BAT.

Discussion

The present investigation indicates a significant decline in 
male sex hormone indices in patients with advanced HF over 
a period of 3 years. This decline is not influenced by a vita-
min D3 supplement of 4000 IU daily, neither in the entire 
study group nor in the subgroup of patients with circulating 
25OHD concentrations < 30 nmol/L.

Several observational studies indicate a positive asso-
ciation of circulating 25OHD concentrations with male sex Ta
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hormone concentrations [3–7]. However, observational stud-
ies are subject to reverse causation bias and unexplained 
confounding. Therefore, RCTs are considered to be the most 
appropriate way to demonstrate the role of vitamin D in 
health [26]. Data from RCTs regarding the effect of vitamin 
D supplementation on male sex hormone concentrations are 
scarce [9–11, 27] and mainly focus on apparently healthy 
men [10, 11, 27]. To the best of our knowledge, this is the 
first RCT investigating the vitamin D effect on male sex hor-
mone indices in patients with advanced HF. Study partici-
pants were on average in their sixth decade of life and sev-
eral male sex hormone indices such as TT, fT, and BAT were 
initially on average within the respective reference range. 
It is unclear at present whether the decline in these indices 
during the study period was a consequence of the disease or 
simply of advancing age, but age showed an inverse associa-
tion with fT and BAT. Independent of the cause, our data 
indicate that this decline in male sex hormone indices can-
not be prevented by vitamin D supplementation. There was 
also no treatment effect on testosterone status in vitamin 
D-deficient study participants, as indicated by the subgroup 
analysis in patients with initial circulating 25OHD concen-
trations < 30 nmol/L. This null finding is further underlined 
by no vitamin D effect on testosterone status in subgroup 
analysis of participants with low-baseline testosterone con-
centrations. The finding that circulating 25OHD was only 
weakly and inversely correlated with some sex hormone 
indices is in line with our null finding on vitamin D treat-
ment effects. Moreover, iPTH was not correlated with any 
sex hormone parameter. The increase in plasma calcium and 
1,25(OH)2D indicates inadequate initial vitamin D status in 
our study cohort. The fact that compared with placebo vita-
min D supplementation did not significantly decrease iPTH 
concentrations indicates that inadequate substrate availabil-
ity rather than impaired hormonal regulation was the cause 
of low circulating 1,25(OH)2D concentrations. Notably, in 
the entire study cohort of the EVITA trial [18] six cases of 
hypercalcemia have been reported in the vitamin D group 
and three in the placebo group (P = 0.192).

Our data do not support the results of two aforementioned 
earlier studies [8, 9], which indicated positive effects of vita-
min D supplementation on male sex hormone indices: One 
of these studies [8] was not a placebo-controlled trial and 
results may thus have been biased by confounding. In the 
other study including obese individuals [9], all participants 
were also on a weight reduction program. Since weight loss 
seems to reverse obesity-related male hypogonadism [28], 
the increase in TT, fT, and BAT in that study in the patients 
assigned to vitamin D, which was not seen in the patients 
assigned to placebo, may have been influenced by the weight 
loss. However, results of the present investigation are in 
line with two other publications [10, 11]: Jorde et al. [10] 
combined three RCTs of patients with mean initial 25OHD 
concentrations of 48 nmol/L, who were supplemented with 
20,000–40,000 IU vitamin D per week vs. placebo for 6–12 
months. Their analysis showed no significant vitamin D 
effect on serum TT or fT concentrations. Results remained 
unchanged in sub-analyses of subjects with low-circulating 
25OHD or TT concentrations. In a post hoc analysis by 
Heijboer et al. [11] of three small clinical trials of limited 
duration (6–16 weeks) in men with normal baseline TT 
concentrations, vitamin D supplementation (daily doses of 
600, 1200 or 2000 IU) was not associated with an increase 
in circulating TT concentrations. A very recent RCT in 
100 healthy eugonadal men with 25OHD below 75 nmol/L 
also failed to show an effect of vitamin D supplementation 
(20,000 IU weekly for 12 weeks) on T status [27]. Collec-
tively, data indicate that there is currently no convincing 
evidence for an improvement in male sex hormone concen-
trations by vitamin D supplementation.

Our investigation has several strengths, but also some 
limitations. Strengths include the study design of an RCT, 
the high cumulative vitamin D3 dose of 4000 IU daily for 3 
years, the homogenous group of patients, and the fact that 
sex hormone indices declined over time, predestining the 
patients for testing a potential vitamin D effect on these 
parameters. One limitation is the relatively small number 
of patients in this secondary analysis of the EVITA trial. 

Table 3   Spearman’s rank correlation coefficient between male sex hormone indices and calciotropic hormones in plasma samples of the EVITA 
trial (n = 266)

* P < 0.05; ** P < 0.01

Total testosterone Sex hormone-binding 
globulin

Free testosterone Bioactive testosterone

Age − 0.180* 0.204** − 0.326** − 0.327**
BMI − 0.248** − 0.271** − 0.138 − 0.138
Calcium − 0.036 − 0.038 − 0.010 − 0.017
25-Hydroxyvitamin D − 0.103 0.169** − 0.171** − 0.175**
Intact parathyroid hormone 0.061 0.121 − 0.031 − 0.034
1,25-Dihydroxyvitamin D 0.003 − 0.139* 0.077 0.088
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Therefore, we cannot definitively preclude the possibility 
of a statistical type II error. Moreover, the present analysis 
was performed only in those patients who terminated the 
study as planned. A higher prevalence of TT deficiency in 
those patients who were not included in our data analysis 
cannot be ruled out. However, since vitamin D supple-
mentation did not prevent the decline in fT and BAT, and 
others have already shown that vitamin D supplementa-
tion had no significant effect on TT and fT concentrations 
in patients with low TT concentrations [10], it is rather 
unlikely that the results would have changed substantially 
if all study participants had been included in the data anal-
ysis. It is also noteworthy that the restriction of a statistical 
analysis to the per-protocol group usually overestimates 
rather than underestimates effect sizes [29]. Another draw-
back of our investigation is that we did not use a “gold 
standard” mass spectrometry method for T measurements, 
but we do not consider this as a serious limitation in view 
of our clear negative result. Mass spectrometry is also 
the ‘gold standard’ for measuring vitamin D metabolites. 
Therefore, the methods we used for measuring vitamin D 
metabolites are no longer optimal, but as this study aimed 
to evaluate long-term consequences of placebo vs. vitamin 
D this handicap does not jeopardize our conclusion. Our 
study is, however, limited by the lack of measurements 
of luteinizing hormone and follicle-stimulating hormone.

In conclusion, a daily vitamin D3 supplement of 
4000 IU for 3 years did not prevent the decline in fT and 
BAT concentrations in male patients with advanced HF, 
even in those with baseline vitamin D deficiency or inad-
equate TT concentrations.
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