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OBJECTIVE

Sulfonylureas are first-line treatment of hepatocyte nuclear factor 1-a (HNF1A)
diabetes (maturity-onset diabetes of the young type 3), but many patients do not
achieve optimal glycemic control without episodes of hypoglycemia. We inves-
tigated the combination of the sulfonylurea glimepiride and the dipeptidyl
peptidase 4 inhibitor linagliptin versus glimepiride monotherapy with respect
to glycemic variability, glycemic control, and risk of hypoglycemia.

RESEARCH DESIGN AND METHODS

In a randomized, double-blinded, crossover trial, patientswithHNF1Adiabetes (n5
19; mean6 SD age 436 14 years, BMI 24.86 2.8 kg/m2, and glycated hemoglobin
[HbA1c] 7.46 0.2% [57.16 7.3 mmol/mol]) were randomly assigned to treatment
with glimepiride 1 linagliptin 5 mg (16 weeks), washout (4 weeks), and
glimepiride 1 placebo (16 weeks) (or vice versa). Glimepiride was titrated
targeting a fasting plasma glucose of 4.5–6.0 mmol/L without hypoglycemia.
Treatments were evaluated by continuous glucose monitoring (CGM), HbA1c, and
meal test.

RESULTS

Comparedwith glimepiride1placebo, glimepiride1 linagliptindidnot significantly
improve the primary end point, mean amplitude of glycemic excursions (MAGE)
(mean difference 20.7 mmol/L, P 5 0.1540), but displayed significant reductions
in coefficient of variation on CGM (23.6%, P5 0.0401), HbA1c (20.5%, P5 0.0048),
and glimepiride dose (20.7 mg/day, P 5 0.0099). b-cell glucose sensitivity
(assessed as C-peptide–to–glucose ratio) during meal test improved with
glimepiride 1 linagliptin. Incidences of hypoglycemia were similar with both
treatments.

CONCLUSIONS

Linagliptin as add-on treatment to glimepiride improved glycemic variability and
control without increasing risk of hypoglycemia in patients with HNF1A diabetes.
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Hepatocyte nuclear factor 1-a (HNF1A)
diabetes is a monogenic diabetes sub-
type that belongs to the heterogenous
group of diabetes subtypes collectively
known as maturity-onset diabetes of the
young (MODY). Approximately 1%–2%of
all diabetes cases have a monogenic
cause. HNF1A diabetes (MODY3) is the
most prevalent MODY subtype, account-
ing for ;50% of all MODY cases (1–3).
Similar to type 1 diabetes, tight glycemic
control is critical for reducing microvas-
cular andmacrovascular complications in
patientswithHNF1Adiabetes (4,5). A key
characteristic of HNF1A diabetes is im-
paired glucose-stimulated insulin secre-
tion.This isduetoareducedb-cell glucose
uptake and metabolism resulting in low
intracellular ATP levels (6,7), which, in
turn, leave KATP channels open, prevent-
ing depolarization and insulin release (8).
By binding to the sulfonylurea receptor, a
subunit of the KATP channel, sulfonyl-
ureas close these channels, causing depo-
larization and insulin release (7,9). The
potent insulinotropic effect of sulfonyl-
ureas and the normal-to-high insulin
sensitivity typical for patients with HNF1A
diabetes (7,10) explain their potent glucose-
lowering effect in these patients (11,12).
Accordingly, the sulfonylurea gliclazide
resulted in a 5.2-fold greater reduction in
fasting plasma glucose in patients with
HNF1A diabetes as compared with met-
formin (11). Thus, sulfonylureas are rec-
ommended as first-line therapy in
patients with HNF1A diabetes (13,14).
However, sulfonylurea treatment has
limitations: first, sulfonylureas do not
provide sustained glycemic control in all
patients, and additional glucose-lowering
treatment is often needed; second, sulfo-
nylurea increases risk of hypoglycemia
(15,16); and third, sulfonylurea may lead
to increased body weight (17). Accordingly,
there is a need for studies investigating
efficient glucose-lowering agents as
add-on to sulfonylurea treatment, when
patients lack glycemic control, or an alter-
native treatment approach, when pa-
tients do not achieve glycemic targets
due to recurrent hypoglycemia with
sulfonylureas.
Glucose-dependent insulinotropic pep-

tide (GIP) and glucagon-like peptide 1
(GLP-1) are gut-derived incretin hor-
mones that stimulate insulin release in a
glucose-dependent manner (i.e., only at
plasma glucose levels .4–5 mmol/L)
(18,19). Both hormones are degraded

by the enzyme dipeptidyl peptidase-4
(DPP-4). Inhibitors of DPP-4 increase
endogenous levels of GIP and GLP-1
and are well-known for their glucose-
lowering actions with low risk of hypogly-
cemia in patients with type 2 diabetes
(20,21). In patients with type 2 diabe-
tes, the glucose-lowering effect of DPP-4
inhibition is mainly attributed to the
increase of intact GLP-1 levels because
insulinotropic effect of GIP is severely
diminished in acute studies (22). How-
ever, positive GIP-mediated effects may
occur during prolonged DPP-4 inhibitor
therapy (23). Recent work from our
group has shown additive–to–supra-
additive insulinotropic effects of GIP
and GLP-1 in patients with HNF1A di-
abetes treated with sulfonylureas (24).
In this study, we evaluated the com-
bination of the sulfonylurea glimepir-
ide and the DPP-4 inhibitor linagliptin
versus glimepiride monotherapy with
respect to glycemic variability and con-
trol (glycated hemoglobin [HbA1c]) and
risk of hypoglycemia in patients with
HNF1A diabetes.

RESEARCH DESIGN AND METHODS

Approvals
The study received approval by the
Danish Medicines Agency, the Scientific-
Ethical Committees of the Central and
Capital Region of Denmark, and the Dan-
ish Data Protection Agency. The trial was
initiated September 2017 and concluded
in June 2019. The trial was registered in
the European Union Clinical Trials Reg-
ister (EudraCT) (reg. no. 2017-000204-
15) prior to initiation of the trial, and a
published trial protocol is available (25).
The study was conducted in accordance
with the Declaration of Helsinki and In-
ternational Council for Harmonisation of
Technical Requirements for Pharmaceut-
icals for Human Use guidelines for good
clinical practice (GCP). The study was
monitored by the GCP unit at the Uni-
versity of Copenhagen and the GCP unit
at the Aarhus University Hospital and
University Hospital of Aalborg, Aarhus,
Denmark.

Trial Design and End Points
This was a randomized, double-blinded,
placebo-controlled, crossover trial con-
ducted at two sites: Steno Diabetes Center
Copenhagen (Gentofte Hospital) and
Steno Diabetes Center Aarhus (Aarhus
University Hospital). After a 1-week baseline

evaluation, patients were randomly as-
signed in a 1:1 ratio to the following two
treatment sequences: 1) glimepiride 1
linagliptin (16weeks),washout (4weeks),
and glimepiride1 placebo (16 weeks) or
2) glimepiride 1 placebo (16 weeks),
washout (4 weeks), and glimepiride 1
linagliptin (16 weeks) (Supplementary
Fig. 1). The primary end point was the
difference between treatments in mean
amplitude of glycemic excursions (MAGE)
calculated from 6 days of continuous
glucose monitoring (CGM) at the end of
each treatment period. Secondary end
points were differences between treat-
ments in regard to 1) other variables of
glycemic variability calculated from CGM
(coefficient of variation [CV], SD, mean
glucose, and low blood glucose index), 2)
HbA1c, 3) fasting plasma glucose, 4) body
weight, 5) episodes of hypoglycemia
(assessed with both CGM and self-
measured blood glucose), 6) quality of life,
and 7) plasma glucose excursions, pan-
creatic hormone responses (C-peptide
and glucagon), and acetaminophen ab-
sorption during a 4-h combined meal
and bicycle test.

Patient Population
Potential participants were screened af-
ter receiving detailed information about
the trial and signing informed consent.
Eligibility was evaluated according to
inclusion and exclusion criteria. Inclu-
sion criteria were 1) diagnosis of HNF1A
diabetes caused by a heterozygousmutation
in HNF1A confirmed by Sanger sequenc-
ing of the gene, 2) monotherapy with a
stable dose of glimepiride of ($0.5 mg
per day) during 4 weeks or no glucose-
lowering agent, 3) HbA1c $6.5% ($48
mmol/mol) (patients on glimepiride treat-
ment) or HbA1c $7.0% ($53 mmol/mol)
(patients receiving no glucose-lowering
agents), 4) age$18 years, 5) capability to
perform a 30-min light bicycle test at a
heart rate of 100–120 bpm, and 6) use of
intrauterine contraceptive devices or
hormonal contraception (females). Ex-
clusion criteria were 1) use of glucose-
lowering drugs other than glimepiride;
2) uremia, end-stage renal disease, or
estimated glomerular filtration rate ,30
mL/min/1.73 m2 and/or macroalbumin-
uria; 3) liver disease, serum alanine ami-
notransferase, and/or serum AST .2 3
upper normal serum levels; 4) anemia
(males,hemoglobin,8.0mmol/L; females,
,7.0 mmol/L); 5) history of acute and/or
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chronic pancreatitis; 6) pregnancy, breast-
feeding, or intention to become pregnant;
7) inability to complete the study; and 8)
known allergic reaction to study medication.

Randomization
Randomization codes were developed
by a computer-generated random list of
numbers. and the patients were allo-
cated to treatment group by an un-
blinded employee who was otherwise
uninvolved in the study. A.S.C. enrolled
the patients, but both patients and A.S.C.
remained blinded throughout the trial
period and data analyses.

Trial Medication
Tablets with linagliptin 5 mg and placebo
had identical appearance and were pro-
vided by Boehringer Ingelheim. Tablets
of glimepiride 1 mg (with the possibility
of splitting in half) was not blinded and
were delivered by the Hospital Phar-
macy of the Capital Region, Herlev,
Denmark. Patients treated with glime-
piride at screening continued the same
dosage during the 1-week baseline eval-
uation and during washout. One treat-
ment-näıve patient started on 0.5 mg
glimepiride after the baseline evaluation.
Each treatment periodwas divided into a
drug titration period (weeks 1–4/weeks
16–20) and amaintenance period (weeks
5–15/weeks 25–35). During the titration
period, glimepiride was uptitrated once
weekly (0.5 mg per week) in a treat-to-
target manner with a maximum daily
doseof 6mg inboth groups (Supplementary
Fig. 1). A total daily dose of glimepiride
$1 mg was administered in two doses:
one dose in the morning and one dose in
the evening. Target fasting plasma glucose
(average for 5 days) was between 4.5 and
6.0 mmol/L (both inclusive) without epi-
sodes of symptomatic or biochemical hy-
poglycemia (plasma glucose#3.9 mmol/L).
During the maintenance period, all medi-
cation doses remained unaltered unless
patients had recurrent (two or more)
hypoglycemic episodes, and in this case,
thedoseof glimepiridewas downtitrated
adequately. If target fasting plasma glu-
cose was not achieved during the drug
titration period, the dose of glimepiride
was adjusted at the investigators’ discre-
tion. Once-daily linagliptin 5 mg or pla-
cebo was initiated at the start of each
treatment period and the dose kept
stable throughout the study. During
washout, the dose of glimepiride at

randomization was immediately reintro-
duced and linagliptin/placebo was ter-
minated. Participants were encouraged
not to change their lifestyle (i.e., diet,
exercise, and smoking status) during the
trial. Episodes of hypoglycemia were de-
fined according to guidelines and are
reported separately for themaintenance
phase and during CGM and combined
meal and bicycle test. Patient-reported
episodes of hypoglycemia are defined as
blood glucose ,4.0 mmol/L confirmed
by self-measured blood glucose mea-
surements on a glucometer (26). A hypo-
glycemic episode during CGM was defined
as glucose measured#3.9 mmol/L in at
least 20 consecutive minutes as recom-
mended in guidelines (27). Hypoglyce-
miawas categorizedas level 1hypoglycemia
(plasmaglucose3.0–3.9mmol/L), level 2hy-
poglycemia (plasma glucose,3.0 mmol/L),
and level 3 hypoglycemia (severe hypogly-
cemia with need of third-party assistance
for recovery) (26).

Clinical Visits
Six types of visits were performed: screen-
ing, randomization, mounting of CGM,
telephone visits, clinical visits, and a com-
bined meal and bicycle test. Specification
of blood samples taken at the visits has
previously been published (25). A study
timeline is depicted in Supplementary
Table 1. At all onsite visits, the following
were registered: adverse events, epi-
sodes of hypoglycemia, and compliance.
CGM devices were placed on the lower
left or right quadrant of the abdomen,
and patients were instructed to mea-
sure plasma glucose four times daily,
preferably before the three main meals
and before bedtime.

Meal and Bicycle Test
A combined meal and bicycle test was
applied tomake our test similar to that of
twoother studies of patientswithHNF1A
diabetes (15,16). The combinedmeal and
bicycle test provides a greater risk of
hypoglycemia (due to exercise-induced
reduction of plasma glucose) compared
with a traditional meal test executed in
an inactive semirecumbent state. In ad-
dition, it alsomimics daily life better, as it
takes into account thatmost patients are
not totally inactive 4 h following a meal.
The combined 4-h meal and bicycle test
consisted of a liquidmixedmeal (525 kcal:
65gcarbohydrate,20g fat,and21gprotein)
to which was added 1.5 g acetaminophen

(Panodil; GlaxoSmithKline A/S, Copenha-
gen, Denmark). Patients arrived in the
clinical research facility after an over-
night fast of at least 10h. Trialmedication
was given at time260min, and themeal
was served at time 0 min. At time 60–
90 min, patients cycled with a target
heart rate of 90–110 bpm. Patientswere
monitored for hypoglycemic symptoms,
and bloodwas sampled formeasurements
of plasma glucose, C-peptide, glucagon,
and acetaminophen at prespecified
time points (see Supplementary Fig. 3).

Analytical Procedures
For CGM measurements, iPro2 CGM
(Medtronic, Northridge, CA) was used,
which has previously been validated (28).
For calibration of CGM and measure-
ments of blood glucose during the trial,
participantswere given Contour XT gluco-
meters (Ascencia Diabetes Care, Co-
penhagen, Denmark). A description of
analytical procedures regarding the sam-
ples from the meal test is presented in
the Supplementary Material.

Statistical Analysis and Calculations
All analyses were performed on the
intention-to-treat population, who were
randomized and received at least one
dose of linagliptin or placebo. Normally
distributed data were summarized by num-
ber of observations (n) andmean and SD.
Data that were not normally distributed
are presented as median and interquar-
tile ranges. Categorical data were sum-
marized in numbers and percentages.
Comparisons between treatment out-
comes (except body weight) were per-
formed in a linear mixedmodel including
treatment as a fixed effect and with an
unstructured covariance pattern. P val-
ues were evaluated using Kenward-Roger
approximation of the degrees of free-
dom. Missing data were implicitly im-
puted byperforming likelihood inference
in the linear mixed model. To investigate
potential carryover effects,we tested the
treatment * period interaction, but no
evidence was detected for any variable.
To testwhether relatednesshadaneffect
on the outcome, family was added to the
model as a random effect; however, this
did not alter any of the statistical results.
Body weight changes (D values) were com-
pared between the treatments using a
paired t test. All tests were carried out
with a significance level of 5% without
adjustment for multiple comparisons.
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Adverse events are summarized qualita-
tively. All statistical analyses were per-
formed in SAS studio, version 9.4, and
graphical presentation was in GraphPad
Prism 8. For calculation of CGM-derived
variables, the program EasyGV was used
(29). Glucose variables included MAGE,
CV, SD, mean, low blood glucose index,
and time spent in hypoglycemia, near
normoglycemia, andhyperglycemia. Treat-
ment responses during the meal and
bicycle test were quantified as area under
the curve (AUC) calculated using the
trapezoidal rule or baseline-subtracted
AUC (bsAUC). For bsAUC, the average of
values at times210,25, and 0 min was
defined as baseline. Sample size calcu-
lationwasbasedon theprimaryoutcome
MAGE (difference between glimepiride1
linagliptin and glimepiride 1 placebo).
The power of our study (1 2 b) was set
at0.8, and, thus, the riskof acceptinga false
hypothesis is 0.20 (b 5 0.20) with a two-
sided significance level at 0.05 (a 5 0.05).
A minimal relevant difference of 2 mmol/L
between treatments in MAGE was chosen
with an expected SDof 2.8mmol/L based
on the work by Saisho et al. (30). Thus, a
total of 16patientswereneeded, but due
to riskofdropoutandto increasepowerof
secondary end points, 20 patients were
included. A detailed power calculation
has previously been published (25).

RESULTS

Patient Disposition and Baseline
Characteristics
We assessed 224 patients with HNF1A
diabetes for eligibility to enter the study
(Supplementary Fig. 2). A total of 22 pa-
tientswere screened:1wasexcludeddue
to albuminuria, and 1 withdrew consent
before randomization. One participant
was excluded from data analysis due to
withdrawal of consent after randomiza-
tion but before exposure to study drugs.
Two other participants dropped out dur-
ing the study in week 4 andweek 13 (due
to difficulty adhering to study protocol
and time concerns, respectively), and both
patients are included in the analysis. Par-
ticipant baseline characteristics are pre-
sented in Table 1 and the specific HNF1A
mutations in Supplementary Table 2. Over-
all compliance was good: 97% with both
glimepiride and linagliptin/placebo.

Glimepiride Dose
The mean glimepiride dose increased
from 1.9 mg at baseline to 2.7 mg and

3.4 mg with glimepiride 1 linagliptin
and glimepiride1 placebo, respectively
(mean difference20.7mg [95% CI21.2
to20.2], P5 0.0099) (Table 2). Nine of
17 patients received a lower glimepiride
dose during the treatment period with
glimepiride1 linagliptin comparedwith
glimepiride 1 placebo (Supplementary
Table 2). The remaining eight patients
received the same dose of glimepiride
regardless of linagliptin/placebo; three
of these received the maximal glime-
piride dose (6.0 mg glimepiride), while
the remaining patients received submax-
imal doses of glimepiride.

Glycemic Variability From CGM
No significant reduction in the primary
end point, MAGE, was observed with
glimepiride1 linagliptin comparedwith
glimepiride 1 placebo (20.7 mmol/L
[21.9 to 0.4], P5 0.1540) (Table 2, Fig.
1A–C, and Supplementary Table 3). Com-
pared with glimepiride 1 placebo, gli-
mepiride1 linagliptin resulted in significant
reductions in both CV (23.6% [27.0 to
20.2], P5 0.0401) and SD (20.4mmol/L
[20.8 to20.1], P5 0.0210), while mean
plasma glucose did not change signifi-
cantly (20.5 mmol/L [21.4 to 0.4], P 5
0.2341). A trend toward a reduction in
time spent in hyperglycemia and an in-
crease in time spent in normoglycemia

with glimepiride 1 linagliptin versus
glimepiride1placebowas also observed
(Table 2).

Glycemic Control
A reduction in HbA1c was observed with
glimepiride 1 linagliptin compared with
glimepiride1 placebo (20.5% [20.9 to
20.2] (25.6mmol/mol [29.3 to21.8]),
P 5 0.0048) (Table 2). The proportions
of patients achieving an HbA1c #6.5%
(48 mmol/mol) or a decrement $0.5%
(5 mmol/mol) without hypoglycemia
(during the maintenance phase) were
53% (9 of 17) with glimepiride 1
linagliptin and 44% (8 of 18) with
glimepiride 1 placebo (Supplementary
Table 2).

Fasting Plasma Glucose
Compared with glimepiride 1 placebo,
glimepiride1 linagliptin reduced fasting
plasma glucose (20.7 mmol/L [21.4
to 20.0], P 5 0.0492), and both treat-
ments reduced fasting plasma glucose
compared with baseline (Table 2).

Hypoglycemia
During CGM, 15 vs. 32 episodes of
hypoglycemia were observed with gli-
mepiride 1 linagliptin versus glimepir-
ide 1 placebo, respectively (Table 3
and Supplementary Table 3). Themedian

Table 1—Baseline characteristics
Participants, n 19

Female sex, n (%) 11 (58)

Age (years) 43 (14)

Caucasian, n (%) 19 (100)

Diabetes duration (years) 20 (8–34)

BMI (kg/m2) 24.8 (22.0–25.7)

Fasting plasma glucose (mmol/L) 8.9 (2.3)

HbA1c (%) 7.4 (0.7)

HbA1c (mmol/mol) 57.1 (7.3)

HOMA-IR 0.9 (0.7–1.3)

Complications, n
Retinopathy 5
Microalbuminuria 1
Transient ischemic attack 1

Comorbidities, n
Hypertension 3
Hypercholesterolemia 9
Multiple sclerosis 1

Treatment, n
Glimepiride 18
Diet 1

Data are mean (SD) or median (interquartile range) unless otherwise indicated. Diabetes duration
is from manifest diabetes (first measurement of HbA1c $6.5% [$48 mmol/mol]). HOMA-IR, HOMA
of insulin resistance.
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time spent in a state of hypoglycemia was
in general short: 0.0% (baseline), 0.1%
(glimepiride 1 linagliptin), and 0.3%
(glimepiride1 placebo), respectively (Ta-
ble 3). In contrast, when hypoglycemic
events were assessed from self-reported
and self-measured blood glucose during
themaintenance period, a total of 16 and
10 episodes of hypoglycemia were ob-
served with glimepiride1 linagliptin ver-
sus glimepiride 1 placebo, respectively

(Table 3 and Supplementary Table 2).
Dose reductions of glimepiride due to
recurrent hypoglycemia occurred more
frequently during the maintenance pe-
riod in the glimepiride1 linagliptin arm
(two reductions in one patient and one
reduction in two patients) compared
with the glimepiride 1 placebo arm
(one reduction in one patient). No severe
hypoglycemia was reported. Two events
of hypoglycemia were observed during

the meal and bicycle test in both treat-
ment arms.

Body Weight
There was a significant increase in body
weight with glimepiride1 placebo (1.2 kg
[0.4–2.0], P 5 0.0078). Glimepiride 1 li-
nagliptin was body weight neutral (0.2 kg
[20.7 to 1.0], P 5 0.7025). The mean
difference in body weight changes be-
tween treatment arms was 21.0 kg
(22.3 to 0.2), P 5 0.0961.

Meal and Bicycle Test
Time courses for plasma/serum glucose,
glucagon, C-peptide, C-peptide–to–glucose
ratio, and acetaminophenare presented
in Fig. 1. Glimepiride 1 linagliptin re-
sulted in a greater reduction in plasma
glucose AUC compared with glimepir-
ide1 placebo, and both treatment regi-
mens reduced AUC for plasma glucose
compared with baseline (Table 2). Like-
wise, the b-cell sensitivity for glucose
assessed by AUC for C-peptide–to–glucose
ratio was significantly greater with
glimepiride 1 linagliptin compared with
glimepiride 1 placebo (Fig. 1 and Table
2). An increase in postprandial glucagon
levels from time 0 min was observed
regardless of treatment (Fig. 1). Gastric
emptying assessed by acetaminophen
absorption was slower with glimepiride1
linagliptin compared with glimepiride 1
placebo assessed by AUC, time to peak, and
peak concentration (Fig. 1 and Table 2).

Quality of Life
No significant changes were observed in
mental component scores or physical
component scores between treatment
arms (Table 2).

Adverse Events
No serious adverse events occurred dur-
ing the trial. Hypoglycemia was the most
frequently reported adverse event. Non-
hypoglycemic adverse event counts and
types were similar with both treatments
(Supplementary Table 4).

CONCLUSIONS

This randomized, double-blinded, cross-
over study is the first to evaluate add-on
treatment to sulfonylurea in patients with
HNF1A diabetes. We find that addition of
the DPP-4 inhibitor linagliptin to the sulfo-
nylureaglimepiridedoesnot improveMAGE
but improves CV, SD, HbA1c, and b-cell
glucose sensitivity without increasing
the risk of hypoglycemia.

Figure 1—CGM andmeal and bicycle test. A: Mean6 SD values from CGMduring 24 h at baseline
and at the end of two 16-week treatment periods of glimepiride1 linagliptin and glimepiride1
placebo in 19 patients with HNF1A diabetes. B: Differences in means and 95% CI in glycemic
variability calculated from CGM data between glimepiride 1 linagliptin and glimepiride 1 placebo.
C: Mean percent time spent in different plasma glucose (PG) ranges, calculated from CGM. D–H:
Combined meal and bicycle test concentration versus time for plasma/serum glucose (D),
C-peptide (E), C-peptide–to–glucose ratio (F), glucagon (G), andacetaminophen (H). Graphicsdata
are mean 6 SEM if not otherwise indicated. Orange circle, baseline; red square, glimepiride 1
placebo; blue triangle, glimepiride 1 linagliptin. *P , 0.05.
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A crossover design was chosen to
ensure enough power given the low
prevalence of HNF1Adiabetes and lessen
recruitment struggles. For reduction of a
potential carryover effect, a 4-week
washout periodwas introduced between
treatments. A limitation to our study is
that four patients were related (mother
and son in two families); however, our
statistical analyses indicate no effect of
family. Another limitation is that our
study investigated linagliptin given as an
add-on therapy before the therapeutic
potential of a dose escalation of glime-
piride had been fully explored in all
patients. Based on number of partic-
ipants and time span, our study is the
largest interventional study performed
in patients with HNF1A diabetes; nev-
ertheless, sample size is small and may
reduce generalizability of our results.
Of note, we only included adults ($18
years), and our results may not apply to
pediatric and adolescent populations
with HNF1A diabetes. Three patients
dropped out during the trial, but our
statistical approach with linear mixed
models implicitly imputes missing data
by performing likelihood inference.
We chose MAGE as the primary end

point, as it previously has been seen as a
gold standard measurement of glycemic
variability (31), though without a clear

consensus on the topic. During the con-
duct of our study, a consensus report on
how to report results on glycemic vari-
ability obtained from CGM was pub-
lished. This strongly recommends CV
and SD as primary and secondary key
metrics, respectively, of glucose vari-
ability (27). Considering this publication,
it is fair to say that linagliptin added to
glimepiride treatment in the current
study improved glycemic variability as
assessed by CV and SD.

In interpretation of the results from
our study, it is key to bear inmind thatwe
used a treat-to-target approach. This
resulted in a dose reduction of glime-
piride in 9 of 17 patients (a significant
mean dose reduction of 0.7 mg) during
the glimepiride1 linagliptin period com-
pared with the glimepiride 1 placebo
period. Given the high efficacy of sulfo-
nylureas in patients with HNF1A diabe-
tes, demonstrated in other clinical studies
(11,15), we believe that this is a clinically
relevant dose reduction.

The rationale for investigating DPP-4
inhibition in the current study originates
from clinical experience with the inhib-
itors in patientswithHNF1Adiabetes and
their well-known mode of action on the
b-cells (32,33). Furthermore, our group
has previously shown that patients with
HNF1A diabetes have an impaired incretin

effect (34) and that sulfonylurea-induced
insulin secretion can be potentiated by
addition of exogenous GIP and GLP-1
infusions, respectively (24). In line with
these observations, we here demon-
strate an improved b-cell sensitivity to
glucose (as evaluated from the increase
in AUC for C-peptide–to–glucose ratio
during the combined meal and bicycle
test) with glimepiride1 linagliptin com-
pared with glimepiride 1 placebo. This
finding is in line with the effect of DPP-4
inhibitors inpatientswith type2diabetes
(35,36). Clinically, this may translate into
improvements of long-term glycemic con-
trol and low glycemic variability. Given the
previous study showing insulinotropic
actions of both GIP and GLP-1, it seems
likely that the elevated levels of both
hormones due to DPP-4 inhibition con-
tribute to the insulinotropic effect ob-
served in the current study.

We observed a discrepancy in the
number of episodes of hypoglycemia
measured with CGM (glimepiride 1 li-
nagliptin vs. glimepiride 1 placebo: 15
vs. 32 events, respectively) and self-
reported events during the maintenance
phase (glimepiride 1 linagliptin vs. gli-
mepiride 1 placebo: 16 vs. 10 events).
Our interpretation of these findings is
that the combination therapywas indeed
efficacious and that an increasednumber

Table 3—Hypoglycemia

Baseline
(n 5 19)

Glimepiride 1 placebo
(n 5 18)

Glimepiride 1 linagliptin
(n 5 17)

Hypoglycemia during CGM
Total episodes 8 32 15
Level 1 episodes 6 30 14
Level 2 episodes 2 2 1
Patients without episode 17 6 12

Percent time spend in hypoglycemia during CGM
Total 0.0 (0.0–0.0) 0.3 (0–3.4) 0.1 (0–3.4)
Level 1 0.0 (0.0–0.0) 0.3 (0.0–3.0) 0.1 (0.0–0.7)
Level 2 0.0 (0.0–0.0) 0.0 (0.0–0.0) 0.0 (0.0–0.0)

Patient-reported hypoglycemia in maintenance phase
(weeks 5–15 and 24–35)

Total episodes N/A 10 16
Level 1 episodes 10 15
Level 2 episodes 0 1
Patients without episode 11 10

Hypoglycemia during meal and bicycle test
Level 1 episodes 1 2 2
Level 2 episodes 0 0 0

Data are n (counts) or median (interquartile range). A hypoglycemic episode verified by CGM is defined as glucose measurements#3.9 mmol/L in at
least 20 consecutiveminutes. Patient-reportedepisodesof hypoglycemia aredefinedas bloodglucose,4.0mmol/L confirmedby self-measuredblood
glucose measurements on a glucometer. Level 1 hypoglycemia is a glucose value of 3.0–3.9 mmol/L and level 2 hypoglycemia is defined as a glucose
value,3.0mmol/L. Both level 1 and level 2 hypoglycemia are per definition nonsevere hypoglycemia (no need of third-party assistance for recovery of
hypoglycemia).
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of HNF1A patients needed dose reduc-
tions of glimepiride (due to recurrent
hypoglycemia during the maintenance
phase) when treatedwith glimepiride1
linagliptin versus glimepiride1placebo.
A dose titration targeted on fasting blood
glucose levels of 4.5–6.0 mmol/L and
absence of hypoglycemia over a time
course of 4 weeks may have been too
short to fully evaluate the risk of hypo-
glycemia. This is probably why some pa-
tients had recurrent hypoglycemia and
dose reductions of glimepirideduring the
maintenance phase. Given the differen-
ces in observed hypoglycemia between
the methods used, we believe it is fair to
conclude that the risk of hypoglycemia is
similar with both treatments.
We found that linagliptin added to

glimepiride treatment exerted small but
statistically significant reductions in gas-
tric emptying (evaluated by the acet-
aminophen absorption test) (Table 2).
Studies in patients with type 2 diabetes
have not shown any effect of DPP-4
inhibition on gastric emptying as as-
sessed by radioactively labeled meals
(37) or the acetaminophen absorption
test (35), and the present finding is likely
of no or little clinical relevance and may
represent a chance finding. Our finding
could also be attributable to the timingof
blood samples with infrequent blood
sampling near time to peak, which may
reduce the precision of the acetamin-
ophen absorption test.
In conclusions, the DPP-4 inhibitor li-

nagliptin added to treatment with the
sulfonylurea glimepiride in patients with
HNF1A diabetes reduced glycemic vari-
ability (as evaluated from CV and SD but
notMAGE) and HbA1c without increasing
the risk of hypoglycemia or other adverse
events.
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