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Background. The immune response to COVID-19 vaccination is inferior in kidney transplant recipients (KTRs) and to a lesser 
extent in patients on dialysis or with chronic kidney disease (CKD). We assessed the immune response 6 months after mRNA-1273 
vaccination in kidney patients and compared this to controls.

Methods. A total of 152 participants with CKD stages G4/5 (eGFR <30 mL/min/1.73 m2), 145 participants on dialysis, 267 
KTRs, and 181 controls were included. SARS-CoV-2 Spike S1 specific IgG antibodies were measured using fluorescent bead- 
based multiplex-immunoassay, neutralizing antibodies to ancestral, Delta, and Omicron (BA.1) variants by plaque reduction, 
and T-cell responses by interferon-γ release assay.

Results. At 6 months after vaccination, S1-specific antibodies were detected in 100% of controls, 98.7% of CKD G4/5 patients, 
95.1% of dialysis patients, and 56.6% of KTRs. These figures were comparable to the response rates at 28 days, but antibody levels 
waned significantly. Neutralization of the ancestral and Delta variants was detected in most participants, whereas neutralization of 
Omicron was mostly absent. S-specific T-cell responses were detected at 6 months in 75.0% of controls, 69.4% of CKD G4/5 
patients, 52.6% of dialysis patients, and 12.9% of KTRs. T-cell responses at 6 months were significantly lower than responses at 28 days.

Conclusions. Although seropositivity rates at 6 months were comparable to rates at 28 days after vaccination, significantly decreased 
antibody levels and T-cell responses were observed. The combination of low antibody levels, reduced T-cell responses, and absent 
neutralization of the newly emerging variants indicates the need for additional boosts or alternative vaccination strategies in KTRs.
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COVID-19–associated mortality risk is 3- to 4-fold higher in 
patients with severely impaired kidney function, patients on di
alysis, and kidney transplant recipients (KTRs) compared with 

the general population [1]. Therefore, sustained effectiveness of 
COVID-19 vaccination in the face of novel emerging variants is 
of great importance for these patients.

We recently performed a clinical trial with approximately 
800 participants to assess the immunogenicity, tolerability, 
and safety of the mRNA-1273 COVID-19 vaccine in 
kidney patients [2]. In particular, KTRs showed a combina
tion of low antibody and nondetectable T-cell responses 28 
days following the second vaccination. Notably, almost all 
dialysis patients and patients with chronic kidney disease 
(CKD G4/5) showed seroconversion, but antibody levels 
were significantly lower compared with controls [3]. This 
is in accordance with other smaller studies that described 
lower seroconversion rates in patients on dialysis and 
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in transplant recipients 28 days after 2 doses of mRNA vac
cines [4, 5].

mRNA vaccines have recently been shown to induce 
durable immunological memory, with protection against 
newly emerging SARS-CoV-2 variants in healthy individu
als [6, 7]. However, especially among older individuals 
and patients on immunosuppression, antibody levels rapid
ly wane over a 6-month period [8]. These data underline the 
importance of long-term follow-up of high-risk patients 
with kidney disease to assess the need for additional boosts 
or alternative vaccination strategies.

We studied the concentration of spike S1 binding antibodies; 
the level of neutralizing antibodies to the ancestral, Delta, and 
Omicron (BA.1) variants; and T-cell responses at 6 months af
ter mRNA-1273 COVID-19 vaccination in patients with se
verely impaired kidney function, patients on dialysis, KTRs, 
and controls without known kidney disease.

METHODS

The design of the Dutch Renal patients COVID-19 
VACcination (RECOVAC) Immune Response study was pub
lished previously [2]. Ethical approval was obtained from the 
Dutch Central Committee on Research Involving Human 
Subjects and the local ethics committees of the participating 
centers.

Study Participants and COVID-19 Vaccination

Four cohorts were included in the study. Cohort A (controls) 
consisted of participants without kidney disease (eGFR 
>45 mL/min/1.73 m2), cohort B of patients with severely im
paired kidney function (eGFR <30 mL/min/1.73 m2 or CKD 
stages G4/5), cohort C of patients on hemodialysis or peritoneal 
dialysis, and cohort D of KTRs. The control cohort included 
partners, siblings, or household members of participants in co
horts B, C, and D. All participants received 2 mRNA-1273 
COVID-19 vaccinations (Moderna Biotech Spain, S.L.) with 
an interval of 28 days. Blood samples were collected at baseline, 
prior to the second vaccination, and 28 days and 6 months after 
the second vaccination. Patients who experienced COVID-19 
before or during the study were excluded.

SARS-CoV-2 Spike S1-Specific Immunoglobulin G Antibody Response and 
Virus Neutralizing Antibodies

SARS-CoV-2 spike S1-specific IgG antibodies were measured 
in serum samples using a validated fluorescent bead-based 
multiplex-immunoassay, as previously described, and ex
pressed as international binding antibody units per milliliter 
(BAU/mL) [9, 10]. Participants were classified as seropositive 
or seronegative; the cutoff was set at S1-specific IgG antibody 
concentration ≥10 BAU/mL [10, 11]. Nucleocapsid antibodies 
were measured at all time points using multiplex immunoassay, 

as previously described, and classified as positive or negative 
[12].

Plaque reduction neutralization tests against the ancestral 
SARS-CoV-2 and the Delta and Omicron variants were per
formed as described previously [7, 11]. For feasibility, it was a 
priori decided to measure neutralizing antibodies only in a ran
dom sample of 20 patients per group with measurable 
S1-specific IgG antibodies at 6 months included in 1 of the par
ticipating centers (Erasmus MC Rotterdam).

SARS-CoV-2–Specific T-Cell Response

SARS-CoV-2–specific T-cell responses were measured in all 
patients participating at the Erasmus MC Rotterdam including 
40 controls, 36 CKD G4/5 patients, 38 dialysis patients, and 
62 KTRs. Measurement was performed using a commercially 
available interferon (IFN)-ɣ release assay (IGRA) according 
to the manufacturer’s instructions (QuantiFERON, QIAGEN) 
[13]. Results from the Antigen-2 (peptides covering the entire 
S protein) assay were expressed in IU/mL after subtraction of 
the negative control values as interpolated from a standard cal
ibration curve.

Antibody Decay

Previous studies have shown that decay of SARS-CoV-2– 
specific antibodies most likely follows an exponential pattern 
over time [14]. We therefore calculated decay in antibodies 
over time using an exponential formula in order to estimate an
tibody half-life and time to reach certain antibody levels as fol
lows: y = a × bX, where y is the S1 IgG antibody level at 
6 months, a is the S1 IgG antibody level at 28 days, b is the slope, 
and X is time. The slope b was calculated as: log10(b) = 
(log10(y) − log10(a))/(X(y) − X(a)). Half-life was subsequently 
calculated as: half-life = log10(.5)/log10(b). Time to reach a 
certain S1 IgG antibody level (c) was calculated as: time until 
c = X(a) + (log10(c) − log10(a))/log10(b).

Statistical Analyses

Continuous data are presented as mean with standard devia
tion or as median and interquartile interval in case of nonnor
mal distribution. Categorical data are presented as percentages. 
Differences between patient groups and the control group were 
tested using the independent t test, Mann–Whitney U test, or 
Pearson χ2 test depending on data distribution, with 
Bonferroni correction for multiple testing. Differences within 
study cohorts over time were tested using the paired sample t 
test, Wilcoxon signed rank test, or Pearson χ2 test depending 
on data distribution. The correlation between the S1 IgG anti
body levels measured at 28 days and 6 months after the second 
vaccination was tested by performing Pearson correlation. 
All analyses were performed with the statistical software 
IBM SPSS Statistics version 23.0 (SPSS Inc, Chicago, IL). 
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Figures were created with the software GraphPad Prism version 
5.00 (GraphPad Software, San Diego, CA). A 2-sided P value 
<.05 was adopted to denote statistical significance and correct
ed in case of multiple testing using Bonferroni correction un
less stated otherwise.

RESULTS

Baseline Characteristics

A flowchart of study enrollment is depicted in Figure 1. In total, 
181 controls, 152 patients with CKD G4/5, 145 dialysis patients, 
and 267 KTRs were included for the analysis of binding anti
body levels 6 months after vaccination. Baseline characteristics 
of these participants are shown in Table 1.

SARS-CoV-2 Spike S1-Specific IgG Antibody Response at 6 Months

All controls retained seropositivity 6 months after vaccina
tion. The seropositivity rates in patients with CKD G4/5 
and patients on dialysis were 98.7% and 95.1%, respectively 
(compared with 100% and 99.3% at day 28). In KTRs, the se
ropositivity rate was 57.7% at day 28; of these patients, 14.9% 
(n = 23) became seronegative at 6 months (P < .001). Remarkably, 
17.7% (n = 20) of seronegative KTRs at day 28 became sero
positive at 6 months (Figure 2A). Overall, 56.6% of KTRs 
were seropositive at month 6.

In all 4 groups, the S1-specific IgG antibody levels declined 
significantly from day 28 to month 6, but with good correlation 
between the 2 time points (R = 0.88, P < .001) (Supplementary 
Figure 1). In controls, levels decreased 7.7-fold from 3009 to 
380 BAU/mL. In CKD G4/5 patients, levels decreased 7.5-fold 
from 2380 to 309 BAU/mL; in dialysis patients, 9-fold from 
1585 to 165 BAU/mL; and in KTRs, 2.3-fold from 25 to 
16 BAU/mL (all P < .001; Figure 2B). At 6 months after vaccina
tion, S1-specific IgG antibody levels in dialysis patients and 
KTRs were significantly lower when compared with controls 
(both P < .001). While all CKD G4/5 patients, dialysis patients, 
and controls had a decrease in S1-specific IgG antibody levels, 
32 KTRs (18%) had an increase in S1-specific IgG antibody lev
els. None of these patients reported having contracted 
COVID-19 or had detectable nucleocapsid antibodies.

Decay in S1-Specific IgG Antibodies and Predictors of Decay

Since significant waning of S1-specific IgG antibody levels was 
detected at 6 months after vaccination in all groups, we calcu
lated the antibody half-life assuming an exponential decay. The 
overall half-life in the entire cohort was 52 days (41–69), and 
this was comparable between the 4 groups (Table 2, 
Figure 3). With an exponential decay model, we calculated 
the time until seronegativity. This time was 451 days after the 
second vaccination in controls and 442 days in CKD G4/5 pa
tients, whereas it was significantly shorter at 381 days in dialysis 

Figure 1. Participant enrollment and outcomes 6 months after second vaccination. Abbreviations: CKD G4/5, chronic kidney disease stages 4/5; COVID-19, coronavirus 
disease 2019.
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Table 1. Baseline Characteristics per Study Group

Characteristic
Control  

(n = 181)

Chronic Kidney Disease  
Stages 4/5  
(n = 152)

Dialysis  
(n = 145)

Kidney Transplant  
Recipient  
(n = 267)

Female, n (%) 107 (59.1) 53 (34.9) 48 (33.1) 123 (46.1)

White, n (%) 167 (92.3) 135 (88.8) 121 (83.4) 243 (91.0)

Age, years 58.4 ± 12.9 60.6 ± 13.4 60.0 ± 13.8 55.9 ± 14.1

Body mass index, kg/m2 27.5 ± 5.3 27.8 ± 5.2 26.7 ± 5.7 27.0 ± 4.6

Systolic blood pressure, mm Hg 146.3 ± 22.7 151.1 ± 24.1 139.2 ± 25.8 146.4 ± 21.3

Diastolic blood pressure, mm Hg 84.8 ± 11.6 84.1 ± 11.9 78.2 ± 16.5 84.5 ± 10.9

Current smoking, n (%) 31 (17.1) 23 (15.1) 33 (22.8) 28 (10.5)

Current alcohol consumption, n (%) 108 (59.7) 60 (39.5) 32 (22.1) 105 (39.3)

Number of comorbidities 0 (0−1) 1 (1−2) 1 (1−2) 1 (1−2)

Comorbidity, n (%)

Hypertension 49 (27.1) 126 (82.9) 96 (66.2) 219 (82.0)

Diabetes mellitus 17 (9.4) 40 (26.3) 35 (24.1) 56 (21.0)

History of coronary artery disease 9 (5.0) 33 (21.7) 33 (22.8) 35 (13.1)

Heart failure 2 (1.1) 12 (7.9) 10 (6.9) 13 (4.8)

Chronic lung disease 14 (7.7) 16 (10.5) 14 (9.7) 12 (4.5)

History of malignancya 9 (5.0) 20 (13.2) 34 (23.4) 40 (15.0)

Autoimmune disease 4 (2.2) 3 (2.0) 5 (3.4) 14 (5.2)

Lymphocytes, 109/L 2.0 (1.6−2.5) 1.6 (1.2−2.0) 1.2 (0.9−1.6) 1.3 (0.9−1.9)

Estimated glomerular filtration rate, mL/min/1.73 m2 82.3 ± 18.5 17.7 ± 6.1 ... 49.5 ± 18.9

Primary renal diagnosis, n (%)

Primary glomerulonephritis ... 18 (11.8) 14 (9.7) 53 (19.9)

Pyelonephritis ... 1 (0.7) 1 (0.7) 54 (1.5)

Interstitial nephritis ... 7 (4.6) 4 (2.8) 9 (3.4)

Familial/hereditary renal diseases ... 25 (16.4) 19 (13.1) 51 (19.1)

Congenital diseases ... 6 (3.9) 5 (3.4) 18 (6.7)

Vascular diseases ... 31 (20.4) 27 (18.6) 26 (9.7)

Secondary glomerular/systemic disease ... 4 (2.6) 7 (4.8) 12 (4.5)

Diabetic kidney disease ... 9 (5.9) 21 (14.5) 10 (3.7)

Other ... 29 (19.1) 24 (16.6) 39 (14.6)

Unknown ... 22 (14.4) 23 (15.9) 45 (16.8)

Dialysis characteristics, n (%)

Hemodialysis ... ... 110 (75.9) ...

Peritoneal dialysis ... ... 35 (24.1) ...

Time on dialysis, months ... ... 30.0 
(14.0−69.8)

...

Transplant characteristics

First kidney transplant, n (%) ... ... ... 208 (77.9)

Time after last transplantation, years ... ... ... 6.0 (2.0−13.0)

Last transplant

Living, n (%) ... ... ... 183 (68.5)

Preemptive, n (%) ... ... ... 98 (36.7)

Number of immunosuppressive agents ... ... ... 2 (2−3)

Immunosuppressive treatment at baseline, n (%)

Steroids ... ... ... 203 (76.0)

Azathioprine ... ... ... 32 (12.0)

Mycophenolate mofetil ... ... ... 183 (68.5)

Calcineurin inhibitor ... ... ... 221 (82.8)

mTOR inhibitor ... ... ... 17 (6.4)

Other ... ... ... 5 (1.9)

Induction with rituximab last year, n (%) ... ... ... 2 (0.7)

Received kidney transplant after baseline, n (%) ... 13 (8.6) 13 (9.0) 1 (0.4)

Start dialysis after baseline, n (%) ... 9 (5.9) ... 1 (0.4)

Immunosuppressive treatment at month 6, n (%)

Steroids ... 13 (8.6) 11 (7.6) 196 (73.4)

Azathioprine ... ... 1 (0.7) 31 (11.6)
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patients and 308 days in KTRs (both P < .001 compared with 
the control group). Several characteristics differed significantly 
between participants in whom S1-specific IgG antibody levels 
declined faster (half-life below 52 days) or slower (half-life 
above 52 days) (Supplementary Table 1), but these characteris
tics were not consistent between the different groups.

Neutralizing Antibodies Targeting SARS-CoV-2 Variants

In a selection of 20 participants per group with S1-specific IgG 
antibodies, neutralization against the ancestral SARS-CoV-2 
and the Delta and Omicron (BA.1) variants was assessed 
(Figure 4). Neutralizing antibodies to the ancestral and Delta 
SARS-CoV-2 strains were detected in all controls, CKD G4/5 
patients, and patients on dialysis at 28 days (Figure 4). At 
6 months, in several participants in the control, CKD G4/5, 
and dialysis groups, levels of Delta virus neutralizing antibodies 
had dropped below the detection levels. Levels of neutralizing 
antibodies were significantly lower at 6 months compared 
with 28 days after the second vaccination (Figure 4). In 
KTRs, not all participants showed neutralizing antibodies 
against the ancestral and Delta variants. Notably, waning of 
neutralizing antibodies was not apparent in KTRs at 6 months 
compared with 28 days post vaccination. Levels of neutralizing 
antibodies against the ancestral strain and Delta strain correlat
ed with the levels of S1-specific IgG antibodies at 28 days and 
6 months after the second vaccination (ancestral/wild type 
R = .88 and R = 0.85, respectively, both P < .001; Delta R = 
0.83 and R = 0.85, respectively, both P < .001; Supplementary 
Figure 2A and 2B). Notably, neutralization of the newly 
emerged Omicron variant was barely detectable in any of the 
groups, both at 28 days and 6 months after vaccination. 
Correlation plots of neutralizing antibodies against Omicron 
and S1-specific IgG antibodies showed that Omicron was 
only neutralized at high titers of S1-specific IgG, both at 
28 days and 6 months after the second vaccination (R = 0.51 
and R = 0.55, both P < .001; Supplementary Figure 2C).

SARS-CoV-2–Specific T-Cell Responses at 6 Months

CoV-2–specific T-cell response (defined as IFN-ɣ concentration 
≥0.15 IU/mL after specific stimulation) was observed in 87.5% 
and 75.0% of controls, 77.8% and 69.4% of CKD G4/5 patients, 

and 73.3% and 52.6% of dialysis patients at 28 days and 
6 months, respectively (P < .001, P = .002, and P < .001, respec
tively; Figure 5A). A detectable T-cell response was observed in 
17.7% of KTRs at day 28; of these patients, 45.5% (n = 5) had a 
nondetectable T-cell response at 6 months (P < .001).

T-cell responses correlated to the levels of S1-specific binding 
antibodies, both at 28 days and 6 months after the second vac
cination (R = 0.64 and R = 0.59, respectively, both P < .001; 
Supplementary Figure 3). The median IFN-ɣ level at 6 months 
tended to be lower in CKD G4/5 patients (0.28 IU/mL) and were 
significantly lower in dialysis patients (0.21 IU/mL) compared 
with controls (0.76 IU/mL; P = .06 and P = .04, respectively). 
Median IFN-ɣ levels were also significantly lower in KTRs at 
0.02 IU/mL when compared with controls (P < .001). 
Nevertheless, in KTRs, median IFN-ɣ levels at 6 months were not 
significantly lower vs at 28 days, opposed to an observed significant 
decline in controls, CKD G4/5 patients, and dialysis patients 
(Figure 5B).

Of 62 KTRs, 3 (4.8%) showed an increase in IGRA response, de
fined as >0.15 IU/mL at both time points, with doubling between 
day 28 and month 6. An increase in SARS-CoV-2–specific T-cell 
response between day 28 and month 6 was observed in 2 controls 
(5.0%), 4 CKD G4/5 patients (11.1%), and no dialysis patients. 
There was no relation between a rise in S1 antibody titers and 
an increase in T-cell response in the KTRs.

Safety

Overall, 25 safety events were reported between day 28 and month 
6. Significantly more safety events occurred in dialysis patients 
and KTRs compared with controls (6.2% and 4.5% vs 0%, P = 
.003 and P = .01, respectively). None were classified as related to 
COVID-19 vaccination (Table 3). In total, 10 patients died due 
to variable causes; none of these cases were classified as related 
to COVID-19 vaccination. Finally, in the KTR group, 1 partici
pant experienced allograft rejection, which was not related to 
COVID-19 vaccination, and recovered after treatment with meth
ylprednisolone and subsequently thymoglobulin.

DISCUSSION

In this study, we demonstrate waning of binding antibodies, 
neutralizing antibodies, and T-cell responses in different 

Table 1. Continued  

Characteristic
Control  

(n = 181)

Chronic Kidney Disease  
Stages 4/5  
(n = 152)

Dialysis  
(n = 145)

Kidney Transplant  
Recipient  
(n = 267)

Mycophenolate mofetil ... 11 (7.2) 9 (6.2) 181 (67.8)

Calcineurin inhibitor ... 13 (8.6) 11 (7.6) 214 (80.1)

mTOR inhibitor ... 2 (1.3) 2 (1.4) 17 (6.4)

Variables are presented as mean ± standard deviation or as median (interquartile interval) in case of nonnormal distribution.  

Abbreviation: mTOR, mechanistic target of rapamycin.  
aIncluding melanomas, excluding all other skin malignancies.
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Figure 2. Seroconversion rate (A) and S1-specific IgG antibody levels (B) at day 28 and month 6 after second coronavirus disease 2019 vaccination per cohort. Depicted are 
scatter dot plots with a line indicating the median level. P values were calculated using the Wilcoxon signed rank test. Abbreviations: BAU/mL, binding antibody units per 
milliliter; CKD G4/5, chronic kidney disease stages 4/5; IgG, immunoglobulin G; KTR, kidney transplant recipient.
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groups of kidney patients at 6 months after vaccination with 
the mRNA-1273 COVID-19 vaccine. The slopes of these 
decreases in vaccine-induced immunity were similar among 
patient groups and controls. Consequently, SARS-CoV-2– 
specific antibodies and T cells became undetectable in a sub
stantial proportion of dialysis patients, especially KTRs, when 
compared with controls. At 6 months after vaccination, neu
tralizing antibodies to the circulating Omicron variant were 
barely detectable in any of the groups.

Until now, data on durability of the response to vaccination 
were not available from adequately powered and controlled 
vaccination studies in kidney patients, although stronger wan
ing of antibodies in dialysis patients was previously observed 
[15]. Additionally, a study in 312 solid organ transplant recip
ients showed that seropositivity rates after mRNA vaccination 
remained relatively stable until 6 months [16]. Interestingly, 
similar to our observations, that study also detected an increase 
in seropositivity in 43 solid organ transplant recipients (14.7%), 
but the authors could not exclude asymptomatic infections as a 
cause of this increase. This phenomenon of increasing antibody 
concentrations was also observed by Hall et al in a small sub
group of transplant recipients who received placebo vaccina
tion but nevertheless had an increase in anti-Receptor 
Binding Domain antibody levels [17]. We detected an increase 
in antibody concentration in 18% of the KTRs between 28 days 
and 6 months after vaccination, while these participants had 
not reported SARS-CoV-2 infection and we did not detect 
nucleocapsid-specific antibodies. This late increase in antibody 
levels could be explained by ongoing delayed mRNA vaccine– 
induced B-cell stimulation and/or delayed plasma cell differen
tiation in KTRs [18].

Neutralizing antibodies are regarded as an important corre
late of protection against developing severe COVID-19 [19, 20]. 
We show that the majority of kidney patients with measurable 
binding antibodies can still neutralize both the ancestral 
SARS-CoV-2 variant, as well as the Delta variant. 
Neutralizing antibodies were significantly lower in KTRs, al
though waning was less pronounced in this group. In accor
dance with current literature, cross-neutralization of the 
emerging Omicron variant (BA.1) was strongly reduced, and 

almost none of the sera obtained 6 months after vaccination 
neutralized this variant [7, 21–23].

The absence of cross-neutralization explains that reinfec
tions and breakthrough infections with the Omicron variant 
are now frequently seen. The Omicron (BA.1) variant is the first 
variant that formed a novel antigenic cluster [24], explaining 
the reduced vaccine efficacy against this variant. Fortunately, 
a lower risk of severe disease after infection with this variant 
was described [25]. This is potentially due to inherent differ
ences in viral properties between the Omicron and previously 
circulating variants. The absence of cross-neutralization of 
Omicron suggests that immunological mechanisms other 
than virus neutralization are involved in cross-protection 
against severe disease. These might include effector functions 
mediated by nonneutralizing antibodies and virus-specific T 
cells. We therefore speculate that the combination of low bind
ing antibody levels and reduced T-cell responses, in conjunc
tion with lack of neutralization of the Omicron variant, as 
observed in KTRs, could predispose to more severe disease 
upon infection with the Omicron variant.

Thus far, limited data on virus-specific T-cell responses in 
high-risk groups of kidney patients have been reported, espe
cially during standardized follow-up. In healthy individuals, 
cell-mediated immune responses are detectable up to at least 
8 months after vaccination [6, 7]. We observed a trend toward 
waning T-cell responses in this study. However, compared with 
the antibody concentrations, T-cell responses were relatively 
stable. T-cell responses were undetectable in the peripheral 
blood obtained from the majority of KTRs 6 months after vac
cination. However, the fact that we could not measure 
SARS-CoV-2–specific T cells in the circulation does not ex
clude that functional T cells could have been present in the lym
phoid organs to play a role in B-cell activation and antibody 
production. An in-depth analysis of virus-specific T cells is re
quired to better understand the differences in phenotype and 
functionality of T cells between groups.

We report the immunogenicity of mRNA-1273 vaccination 
6 months after completion of the 2-shot regimen, but a third 
vaccination had already been implemented in clinical practice 
in high-risk groups. Our data show that 6 months after the 

Table 2. Decay in S1-Specific Immunoglobulin G Antibody Level per Study Group Assuming an Exponential Decay

Variable Control
Chronic Kidney  

Disease Stages 4/5 Dialysis
Kidney Transplant  

Recipient

Half-life, days 52.6 (43.2–65.5) 52.4 (43.4–72.6) 49.6 (40.4–63.5) 52.9 (32.7–81.3)

Seroresponse defined as ≥10 BAU/mL at day 28, n (%) 181 (100) 152 (100) 144 (100) 154 (57.7)

S1 immunoglobulin G level (BAU/mL) in seropositive participants 3009 (1812–4797) 2380 (1267–4569) 1587 (702–3121)a 310 (57.1–1041)a

Time to 10 BAU/mL (days) in seropositive participants 451 (378–569) 442 (368–610) 381 (313–494)a 308 (119–473)a

Variables are presented as mean ± standard deviation, as median (interquartile interval) in case of nonnormal distribution, or as number (percentage) in case of categorical data. P values were 
calculated using the Mann–Whitney U test with the control group as the reference group. Bonferroni correction was applied for multiple testing.  

Abbreviation. BAU/mL, binding antibody units per milliliter.  
aP < .001.
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Figure 3. Decay in antibodies according to exponential decay model. A, Decay per group in participants with antibody value at day 28 ≥10 BAU/mL. B, Estimated time until 
10 BAU/mL. Abbreviations: BAU/mL, binding antibody units per milliliter; CKD G4/5, chronic kidney disease stages 4/5; IgG, immunoglobulin G; KTR, kidney transplant 
recipient.
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second vaccination, especially in KTRs, the levels of neutraliz
ing antibodies against the ancestral and emerging variants as 
well as T-cell responses are low or not detectable. This under
lines the importance of the third vaccination as a standard part 
of a complete COVID-19 vaccination schedule for KTRs. 
Moreover, when an increased COVID-19 risk exists, this 
vulnerable patient group should be protected by masks and so
cial distancing as advised by the Centers for Disease Control 
and Prevention [26]. Finally, AZD7442 (Evusheld) could be 
considered as preexposure prophylaxis in severely immuno
compromised patients. Additionally, our data show a similar 
half-life of antibodies in all groups. Although seroconversion 
rates were high in CKD G4/5 and dialysis patients, antibody 
levels in these patient groups were lower than in controls. 
This suggests that the interval between the second and third 
vaccination should be shorter in these patients than in the ge
neral population.

The main strength of our study is the prospective design 
with the inclusion of different kidney patients as well as a 
control cohort. The study assessed both (functional) antibody 
responses as well as T-cell responses at predefined fixed time 
points using standardized assays. Study limitations include 
that all patients received the mRNA-1273 (Moderna) 
COVID-19 vaccine, which precludes conclusions about the 
response to other vaccines, and that patients using immuno
suppressive therapy were excluded at baseline from the CKD 
G4/5 as well as dialysis cohorts, which may have skewed the 
seroconversion rate and waning of antibodies in these pa
tients. On the other hand, this enabled specific evaluation of 
the role of impaired kidney function and kidney function re
placement treatment.

In conclusion, although seropositivity rates at 6 months after 
vaccination were comparable to response rates 28 days after 
vaccination, significantly decreased antibody levels and T-cell 

Figure 4. Levels of neutralizing antibodies against the ancestral SARS-CoV-2 (wild type) and the recently emerged Delta and Omicron variants per subgroup and compared 
with level of neutralizing antibodies at 6 months. The dotted horizontal line indicates the lower limit of detection of neutralization (titer of 20). P values were calculated using 
the Wilcoxon signed rank test. Abbreviations: CKD G4/5, chronic kidney disease stages 4/5; KTR, kidney transplant recipient; LLoD, lower limit of dectection; PRNT50, 50% 
plaque reduction neutralization test.
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responses were observed in all groups. In particular, KTRs dis
played a combination of low antibody levels, few detectable 
T-cell responses, and lack of neutralization of circulating vari
ants 6 months after vaccination. Alternative strategies to im
prove immunogenicity of COVID-19 vaccines, including 
additional boosts with (variant-adapted) COVID-19 vaccines, 

should be considered to reduce the risk of severe disease in 
these vulnerable patients.

Supplementary Data
Supplementary materials are available at Clinical Infectious Diseases online. 
Consisting of data provided by the authors to benefit the reader, the posted 

Figure 5. SARS-CoV-2–specific T-cell response in all participants at 1 of the participating centers. A, Percentage of T-cell responders per group 6 months after vaccination 
(defined as Antigen-2 ≥0.15 IU/mL). B, Individual IFN-γ levels per group, with the horizontal line representing the median value. Dotted horizontal line indicates the threshold 
of detectable T-cell response (≥0.15 IU/mL). P values were calculated using the Wilcoxon signed rank test. Abbreviations: CKD G4/5, chronic kidney disease stages 4/5; 
IFN-γ, interferon gamma; KTR, kidney transplant recipient.
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materials are not copyedited and are the sole responsibility of the authors, 
so questions or comments should be addressed to the corresponding 
author.
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